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Abstract 

 

This paper presents an efficient evolutionary algorithm for solving multiobjective 

transportation problem MOTP. a new chromosome's structure was introduced, which is 

adopted as it is capable to representing all possible feasible solutions. Also, in order to keep 

the feasibility of the chromosome, a criterion of the feasibility was designed. Based on this 

criterion the crossover and mutation were implemented and they can always generate feasible 

chromosomes. To avoid an overwhelming number of solutions the algorithm maintains a 

finite-sized archive of non-dominated solutions, which gets iteratively updated in the presence 

of new solutions based on the concept of Epsilon-dominance. Epsilon dominance process 

saves the most representative solutions. Finally, we report numerical results in order to 

establish the actual computational burden of the proposed algorithm and to assess its 

performances with respect to classical approaches for solving MOTP.  
 

1. Introduction 

 

The transportation problem, a specific problem of resource allocation, can be formulated as a 

linear programming problem, where the constraints have a special structure. In its classical 

form the transportation problem minimizes the cost of transporting some commodity that is 

available at m sources (supply nodes) and required at n destinations (demand nodes). The 

source parameter ( ia ) may be production facilities, warehouse, etc., whereas the destination 

parameter ( ib ) may be warehouse, sales outlet, etc. The penalty ( ijC
) that is, the co-efficient 

of the objective functions, could represent transportation cost, delivery time, number of goods 

transposed, unfulfilled demand, and many others. Thus multiple penalty criteria may exist 

concurrently which leads to the research work on multiobjective transportation problem. 
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Until now, many researchers also have a great interest in the multiobjective transportation 

problem, and a number of methods had been proposed for solving it [1-4,9,14,19-20]. 
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A large class of interesting problems, including many optimization problems, has no 

reasonably fast, guaranteed algorithms for solution. In some applications a near optimal 

solution is acceptable if it can be computed reasonably quickly; one approach to finding such 

solutions is to use a Population based algorithms that, given sufficient time, can find solutions 

as close to the real optimum as we wish. Michalewicz et al. [11,19] firstly discussed the use of 

genetic algorithm (GA) for solving linear and nonlinear transportation problems. They used 

these problems as an example of constrained optimization problems, and investigated how to 

handle such constraints with GA. The matrix representation was used to construct a 

chromosome and designed the matrix-based crossover and mutation in their investigation. 

Gen et al. [6] further extended Michalewicz's work to bicriteria solid transportation problem. 

They embedded the basic idea of criteria space approach in evaluation phase so as to force 

genetic algorithm towards exploiting the nondominated points in the criteria space.  

Also, Gen et al. [7] have proposed a new approach which is spanning tree-based genetic 

algorithm for solving MOTP. Spanning tree-based encoding was implemented with Prüfer 

number and adopted to represent a balanced transportation solution.  

 

However, in more real world transportation problems to be solved have a large scale. for the 

problem with m sources and n destinations, for a solution, the matrix-based representation 

require m n  memories in the evolution process. it requires so much memories in the 

development of implementation, and will be spend more computational time. Also, some of 

multiobjective evolutionary algorithm suffer from the large size problem of the Pareto set 

e.g.[14]. Therefore some methods have been proposed to reduce the Pareto set to a 

manageable size. However, the goal is not only to prune a given set, but rather to generate a 

representative subset, which maintains the characteristics of the generated set.  

 

In this paper we present an improved evolutionary algorithm to solve MOTP, where 

chromosome's structure was designed so that the feasibility can be preserved. In order to keep 

the feasibility of the chromosome, a criterion of the feasibility was designed. Based on this 

criterion the crossover and mutation were implemented and they can always generate feasible 

chromosome. The algorithm is an iterative multiobjective algorithm with an external 

population of Pareto optimal solutions that best conform a Pareto Front.  

  Finally, we report numerical results in order to establish the actual computational burden of 

the proposed algorithm and to assess its performances with respect to classical algorithms for 

solving MOTP. 

 

This paper is organized as follows; multiobjective optimization are reviewed in section 2. 

Section 3 gives out the definition of MOTP. The original algorithm is presented in section 4. 

Experimental, results and discussions are discussed in section 5. Conclusion follows in section 

6. 

 

2. MULTIOBJECTIVE OPTIMIZATION 

A general multiobjective optimization problem is expressed by:  

MOP : 
T

1 2 k

T

1 2 n

 Min  F(x)  ( f (x), f (x),..., f (x))

s.t.     x S

x  (x , x ,..., x )






 

Where 1( ( ),..., ( ))kf x f x
are the k objectives functions, 1 2 n( , ,..., )x x x

 are the n 

optimization parameters, and 
nS R   is the solution or parameter space.  
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Definition 1.[13] ( Pareto optimal solution ): 
*x  is said to be a Pareto optimal solution of 

MOP if there exists no other feasible x  (i.e., x S ) such that, 
*( ) ( )j jf x f x

for all 

1,2,...,j k  and 
*( ) ( )j jf x f x

 for at least one objective function jf
. 

 

Definition 2 [8]. (ε-dominance) Let : kf x R  and ,a b X . Then a  is said to ε-dominate b  

for some ε > 0, denoted as a b , if and only if for {1,..., }i k  

(1 ) ( ) ( )i if a f b   

 
Fig. 1. Graphs visualizing the concepts of dominance (left) and ε-dominance (right). 

 

Definition 3 [8]. (ε-approximate Pareto set) Let X  be a set of decision alternatives and 0  . 

Then a set 
x  is called an ε-approximate Pareto set of X , if any vector a x  is ε-dominated 

by at least one vector
b x 

, i.e., 

:  such that ba x b x a       
 

According to definition 2, the ε value stands for a relative "tolerance" allowed for the 

objective values (Fig.1). This is especially important in higher dimensional objective spaces, 

where the concept of ε-dominance can reduce the required number of solutions considerably. 

Also, the use of  -dominance also makes the algorithms practical by allowing a decision 

maker to control the resolution of the Pareto set approximation by choosing an appropriate   

value 

 

3. Multiobjective Transportation Problem (MOTP) 

In real-life situations, the transportation problem (TP) usually involves multiple, conflicting, 

and incommensurate objective functions. This type of problem is called multiobjective 

transportation problem (MOTP). The mathematical model of MOTP can be stated as follows: 

1 1

1

1

( ) ,

 

                , 1, 2,..,

                 , 1, 2,..,

                  0  ,

m n
k k

ij ij

i j

n

ij i

j

m

ij i

i

ij

F x C x

Subject to

x a i n

x b j m

x i j

 







 

 

 







 
 

where 
1 2( ) { ( ), ( ),....., ( )}k kF x F x F x F x  is a vector of K objective functions, the 

superscript on both ( )kF x and 
k

ijC
 are used to identify the number of objective functions (k = 

1, 2, . . . , K), and m and n are the number of sources and destinations, respectively.  
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The above problem implies that the total supply  1


m

i

i

a

must be equal to the total demand 

1


n

j

j

b

. when total supply is equals to the total demand (i.e., total flow) the resulting 

formulation is called a balanced transportation problem. In this paper, we assume a balanced 

transportation problem, where the unbalanced transportation problem can be converted to a 

balanced transportation problem after including a dummy origin or a dummy destination. The 

solution of this problem is called a nondominated solution (if we refer to the objective 

function) and an efficient solution (if we refer to the decision variables space). 

 

4. The Proposed Algorithm 

Genetic algorithms [5,6,11,15] are such a class of evolutionary based algorithms that start 

with a population of randomly generated candidates and "evolve" toward better solutions by 

applying genetic operators, modeled on the genetic processes occurring in nature. It is 

generally accepted that any multiobjective genetic algorithm to solve a problem must have 

five components: 

1. A genetic representation of solutions, 

2. A way to create an initial population, 

3. An evaluation function that plays the role of the environment, 

4. Genetic operators that effect the composition of children during reproduction,  

5. Values for the parameters that the genetic algorithm uses (population size, 

probabilities of applying genetic operators, etc.) 

6. A way to update the archived Pareto solutions. 

  

In the following sub-sections, we present an improved evolutionary algorithm for solving the 

MOTP.  

 

4.1. Initialization Stage  

The genetic representation is a kind of data structure which represents the candidate solution 

of the problem in coding space. In order to form the appropriate design of chromosome, first 

consider each chromosome consists of a sequence  of  m sub-chromosome (m is the number of 

supplies). Each sub-chromosome (Fig.2) consists of n genes (n is the number of demands). all 

chromosome are generated  randomly such that the sum of total genes of each sub-

chromosome equal to the corresponding supply amount. That is 1

n

ij i

j

Gene a



 for each sub-

chromosome i.  

 
Fig. 2. Structure of chromosome for MTP with n sources and m destinations 

 

In the example problem in figure 3, we have two supplies (m=2) and three demands (n=3). In 

order to design the appropriate structure of chromosome using the proposed algorithm, first 

consider each chromosome consists of two sub chromosome (m=2), Each sub-chromosome 

consists of 3 genes (n=3). we generate all chromosome randomly such that, 

11 12 13 1x x x a  
, 21 22 23 2x x x a  

. 
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(a) Transportation graph 

 

 

 
 

(b) Chromosome structure 

Fig. 3. Illustration of chromosome's representation. 

 

It is interesting here to note that all generated chromosome has the following characteristics. 

1. All of generated individual are feasible. 

   2. The chromosome length is only m n , that is 1 1 1 1

m n m n

ij i j

i j i j

Gene a b
   

   
, where the 

problem has m sources and n destinations.  

 

4.2. Evaluation of Non-Dominated Solutions 

A population of size N can be evaluated according to non-domination concept. Consider a set 

of population members, having K (K>1) objective function values. the following procedure 

explains the algorithm by which the nondominated set of solutions can be found[18]. 

Step 0: Begin with i=1. 

Step 1: For all 1,2,..,j N and 
j i

, compare solutions 
ix and 

jx  for domination. 

Step 2: If for any
j

. 
ix , is dominated by 

jx , mark 
ix  as "dominated". 

Step 3: If all solutions (that is, when i N is reached) in the set are considered, Go to       

Step 4, else increment i  by one and Go to Step 1. 

Step 4: All solutions that are not marked "dominated" are non-dominated solutions. 

 

The algorithm initially locates an externally finite size archive of observed nondominated 

solutions. 

 

4.3. Selection Stage 

Selection (reproduction) operator is intended to improve the average quality of the population 

by giving the high-quality chromosomes a better chance to get copied into the next generation. 

The selection directs GA search towards promising regions in the search space. We propose a 

random-weight approach [16] to obtaining a variable search direction towards the Pareto 

frontier. Suppose that we are going to maximize k objective function. The weighted-sum 

objective is given as follows: 

1 1

1

( ) ( ) .... ( ) ( )
k

k k i i

i

f x w f x w f x w f x


   
 

where x  is a string (i.e., individual ), ( )f x  is a combined fitness function, 
( )if x

 is the i-th 

objective function and 1

| 1


 
 

 


k

i i

i

w w

 is a constant weight for 
( )if x

. 

We employ roulette wheel selection as selection mechanism in this study. Where, the 

individuals on each generation are selected for survival into the next generation according to a 

probability value proportional to the ratio of individual fitness over total population fitness; 

this means that on average the next generation will receive copies of an individual in 
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proportion to the importance of its fitness value. The probability of variable selection is 

proportional to its fitness value in the population, according to the formula given by 

( ) ( )
( ) ,

{ ( ) ( )}











Min

Min

x

f x f
p x

f x f

                            

where ( )p x , selection probability of a string x  in a population   and  
( ) { ( ) | }  Minf Min f x x  

 

4.4. Crossover Operators 

The goal of crossover is to exchange information between two parents chromosomes in order 

to produce two new offspring for the next population, we present a modified uniform 

crossover, where one offspring is constructed by choosing every sub-chromosome with a 

probability P (usually 0.5P is used) from either parent, as shown in figure 4.  

In the example problem in figure 4, we have four supplies (that is, we have four  

sub-chromosomes). The second and fourth sub-chromosome are exchanged between parents. 

It is interesting here to note that all offspring's chromosome are feasible. 

 
Fig. 4. Graphs visualizing the crossover operators. 

 

4.5. Mutation Operators 

A mutation operator is a random process where one genotype is replaced by another to 

generate a new chromosome. Such a mutation operator first select a gene randomly from ith 

sub-chromosome and then replace it with a random integer within the interval of  0, ia
, all 

other genes in ith sub-chromosome are generated such that the sum of all genes in the ith sub-

chromosome equal to the ith supply 1

,
n

ij i

j

Gene a



as shown in figure 5.  

 
Fig. 5: Graphs visualizing the mutation operators. 

 

In the example problem in figure 5, we have four supplies, 1 2=11, a =21,a  3a =14 and 4a =17  the 

first gene in the first sub-chromosome is mutated (random integer    10,a 0,11
) and all other 

genes in the 1
st
 sub chromosome are generated such that the sum of all genes equal to the 

supply amount

5

1 1 2 3 4 5

1

11j

j

G a G G G G G


       
. Through this mutation operator, 

the population's feasibility was preserved. 
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4.6. Update Function for Epsilon-Pareto Set. 

Algorithm 1(Table I) shows the structure of the proposed algorithm. The purpose of the 

function generate is to generate a new population in each iteration t, using the contents of the 

old population 
( 1)tP and the old archive set 

( 1)tA  in association with the result of 

recombination and mutation of parents. The function update gets the new population 
( )tP  and 

the old archive set 
( 1)tA and determines the updated one, namely

( )tA .This is explained in 

algorithm 2. 

  

 Algorithm 2 (Table II)  is a two level concept. On the coarse level, the search space is 

characterized by division boxes [15], where each vector belongs to one box. On the fine level 

at most one element is kept in each box.   

 

As a result the proposed algorithm which is based on the  (GA) uses a finite memory, 

successively updates a finite subset of vectors that   -dominate all vectors generated so far. It 

guarantees that the subset contains only one element which are not dominated by any of the 

generated vectors. This puts limits to the size of the archive according the selected value of  . 

Accordingly the algorithm is more practical where a decision maker is able to control the 

resolution of the Pareto set approximation according his needs. Also it guarantees an optimal 

distribution of solutions [15]. The algorithm has a low computational time where, the 

computational time grows with the number of archived solutions. The proposed algorithm 

enable to consider many objective functions. Accordingly it provide the facility to consider 

more criteria in RPC problem such as maximum voltage deviation . 

 

TABLE 1  ALGORITHM 1 

(0) (0)

(0) (0)

(t)

( ) ( 1) ( 1)

( ) ( 1) ( )

1. t 0

2. Create P ,

3. nondominated( )

3.  terminate (A , )  do

4. 1

5. P generate( , ) {generate new search point}

6. update( , )    {update archive

 

















t t t

t t t

R

A P

while t false

t t

A P

A A P

( )

 (algorithm 2)}

7.  

8. Output : t

end while

A  
 

TABLE 2  ALGORITHM 2 
1.  A,x

2. D {x A:box(x) box(x ))

3. if D  

4. { } \

5. : ( ( ) ( ) )

6. { } \{ }

7. : ( ( ) ( ))

8. { }

9. 

10. 

11. 

12.  

 





    

 

 







 

 



 



 





INPUT

then

A A x D

else if x box x box x x x then

A A x x

else if x box x box x then

A A x

else

A A

endif

OUTPUT A  
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5. Experimental, Results and Discussions 

The proposed algorithm was implemented on 2.7-MHz PC using MATLAB 6.5. To confirm 

the effectiveness of the algorithm on the transportation problem, three numerical problems 

were used in the computational studies.  Table 3 lists the parameter setting used in the 

algorithm for all runs. 

 

Table 3. Parameters values used by the proposed algorithm for all runs. 

  

Problem 1:  

Let us 

consider the 

following 

numerical 

example 

presented by many 

researchers 

[1,2,3,4,17] to 

illustrate the 

application of the 

proposed 

algorithm. The problem has the following characteristics: 

Supplies: 1 2 38,  a 19,  a 17.a   
 

Demands: 1 2 3 411,  b 3,  b 14,  b 16.b    
 

   Penalties:  

1 2

1 2 7 7 4 4 3 4

1 9 3 4 ,    C 5 8 9 10

8 9 4 6 6 2 5 1

   
   

 
   
      

C

 
To evaluate the performance of the suggested approach, let us consider the solution of the 

problem by using different methods. The interactive approach in [17] provides the following 

results: Z1 =186 and Z2 =174, the fuzzy approach in [2] gave the following results: Z1 = 170 

and Z2 = 190, the fuzzy approach in  [4] gave the following results: Z(1) = 160 and Z2 = 195, 

the IFGP approach in [1] gave the following results: Z1 =168 and Z2=185. Also, the obtained 

result from t-GA in [7] are (143,265), (156,200), (176,175), (186,171), (208,167) with 

extreme points (143,265) and  (208,167). 

The proposed approach in this study gave a set of solutions as in figure 7. Figure 7 shows that 

the results obtained by the proposed algorithm dominate all other results obtained by other 

different approaches. 

 

 

Parameter 

Value 

Problem 1 Problem2  Problem3 

Problem size 3 4  7 8  4 5  
Number of 

objective 

2 2 3 

Population size 20 40 20 

Mutation rate 0.50 0.6 0.40 

Crossover rate 0.98 0.98 0.98 

Maximum 

generation 

200 400 200 

Relative 

tolerance   

10e-6 10e-6 10e-6 
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Fig. 7. Comparison between the proposed algorithm and different approaches for first 

problem. 

Problem 2: 

Let us consider the following numerical example presented in [7]. The problem has the 

following characteristics: 

Supplies: 1 2 3 4 5 6 710,  a 8,  a 12, 16,  a 21,  a 15,  a 7.a a      
 

Demand: 1 2 3 4 5 6 7 89,  b 7,  b 15, 10,  b 13,  b 16,  b 7,  b 12.b b       
 

Penalties: 

1

1 2 7 7 8 10 9 2

1 9 3 4 3 5 7 1

8 9 4 6 4 1 6 9

2 4 5 5 3 2 3 2

5 4 5 1 9 9 1 6

8 3 3 2 2 3 6 7

1 2 6 4 5 9 3 5

C

 
 
 
 
 

  
 
 
 
 
      

2

4 4 3 4 5 8 9 10

6 2 5 1 7 4 12 4

2 9 1 8 9 1 4 0

3 5 5 3 2 8 3 3

1 4 12 2 1 5 4 9

2 23 4 4 6 2 4 6

1 2 1 9 0 13 2 3

C

 
 
 
 
 

  
 
 
 
 
    

 
Fig. 8. Comparison between the proposed algorithm and t-GA for second problem 

 

To evaluate the performance of the proposed algorithm, let us consider the solution of the 

problem by using different methods. The m-GA and t-GA approaches in [7] provide the 

Pareto set with extreme points (164,359) and (391,164). The proposed algorithm approach in 

this study has a Pareto set of solution with extreme points (129,247) and (435,137) as in figure 

8. Figure 8 shows that the obtained results by the proposed algorithm dominate all the results 

obtained by the t-GA and m-GA. 
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Problem 3: 

Let us consider the following numerical example presented in [2,17]. The problem has the 

following characteristics: 

Supplies: 1 2 3 45,  a 4,  a 2, 9.a a   
  

Demand: 1 2 3 4 54,  b 4,  b 6, 2,  b 4.b b    
 

Penalties 

1

9 12 9 6 9

7 3 7 7 5

6 5 9 11 3

6 8 11 2 2

 
 
 
 
 
  

C

 

2

2 9 8 1 4

1 9 9 5 2

8 1 8 4 5

2 8 6 9 8

 
 
 
 
 
  

C

 

3

2 4 6 3 6

4 8 4 9 2

5 3 5 3 6

6 9 6 3 1

 
 
 
 
 
  

C

 

 
Fig. 9. The obtained solutions by the proposed algorithm for the third Problem. 

 

To evaluate the performance of the suggested approach, let us consider the solution of the 

problem by using different methods. The fuzzy approach in [2] provides the following results: 

Z1 =112,z2=106 and Z3 =80. On the other hand, the iterative approach in [17] gave the 

following results: Z1 = 127,z2=104 and Z3 = 76.  

Figure 9 shows the obtained Pareto frontier, The obtained results by the proposed algorithm 

dominate the results obtained by The fuzzy approach in [2] and the iterative approach in [17]. 

 

6. Conclusions  

In this paper, we proposed an improved algorithm for solving multiobjective transportation 

problem MOTP. Our approach has two characteristic features. Firstly, new chromosome's 

structure was introduced, which is adopted as it is capable to representing all possible feasible 

solutions. Secondly, the algorithm is an iterative multiobjective genetic algorithm with an 

external population of Pareto optimal solutions that best conform a Pareto front.  

To avoid an overwhelming number of solutions an epsilon dominance process saves the most 

representative solutions, which gets iteratively updated in the presence of new solutions based 

on the concept of  -dominance. The main features of the proposed algorithm could be 

summarized as follows: 

 

(a) The proposed approach has been effectively applied to solve the MOTP, with no limitation 

in handing higher dimensional problems. 

(b) Allowing a decision maker to control the resolution of the Pareto set approximation by 

choosing an appropriate   value according his needs. 

(c) The non-dominated solutions in the obtained Pareto-optimal set are well distributed and 

have satisfactory diversity characteristics.  

(d) Low computational time where, the computational time grows with the number of 

archived solutions. 

(e) Simulation results verified the validity and the advantages of the proposed approach. 
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