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Abstract. This paper, the rough bilevel nonlinear programming problem 
(RBNPP) is discussed taking into consideration which level is more important 
than the other. BNPP is transformed into a crisp unconstrained programming 
problem. A trust-region method is used to ensure the global convergence of the 
algorithm. The mechanism of solving RBNPP is presented. There are many 
situations of roughness in these problems are discussed. The solution procedures 
for solving all roughness situations are introduced based on the new proposed 
methodology.  The de�initions of solutions are de�ined in all different situations. 
Also, we show the de�inition of the fully optimal solution of the BNPPs.  Finally, 
numerical examples are given to show solution procedures of a RBNPP based on 
the new methodology. 

1. Introduction  

Bilevel problems (BLP) are one of the most interesting branches of mathematical programming 
programs see e.g., [1, 2]. 

Karush-Kuhn-Tucker (KKT) approach [3] is an interesting method to deal with BLP.  The 
lower level is replaced by its the KKT-conditions. The objective function of the 2nd level 
sometimes is very important and must be satis�ied �irst. So, a new methodology treats BLP 
depend on which level is important to decision maker (DM  ) . If the 1st level superior, then the 
2nd level programming problem is replaced with its KKT conditions. Otherwise, if the 2nd level 
is superior, the 1st level is replaced with its KKT conditions. So, the suggestion here is solving 
BLP twice, one as 1st level is superior and the 2nd level is superior. If the solution of both is the 
same, the full optimal solution of BLP is gotten. This suggestion is very important in real 
applications. 

Moreover, from a topological viewpoint, BLP are more complicated than standard �inite 
programming. The feasible set of a BLP may for example not be closed [4]. So, this paper used a 
numerical approach combines the penalty method with trust region method to solve the 
modi�ied BLP.  This problem converted to an unconstrained programming problem. The 
decisions in real-world situations are always made based on imprecision (incomplete) 
information. There are many approaches are used to deal with incomplete information like 
fuzzy [5], rough [6,7] …etc. These approaches based on the kind of approximation which is 
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convenient and enough for making good decisions. Rough set theory (RST) is one of the most 
interesting approaches to deal with vagueness and imprecision [8]. 

The rough programming problems are presented in [9-13]. It is divided into three types 
based on where roughness is found.  The aim of the present article is presenting a procedure for 
treating BLP with different roughness situations. The de�initions of solutions are de�ined in all 
situations. The effectiveness of our technique is shown and presented by different examples. 

2.Bilevel problem Formulation 

BLP have the following form: 
                                                                               𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦) ,                                        (1) 

                                                S.T: 
𝑔𝑔𝑈𝑈𝑖𝑖(𝑥𝑥,𝑦𝑦) ≤ 0 , 𝑖𝑖 = 1,2, … ,𝑚𝑚1 

min
𝑦𝑦
𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦) 

                                                        S.T: 
𝑔𝑔𝐿𝐿𝑗𝑗(𝑥𝑥,𝑦𝑦) ≤ 0, 𝑗𝑗 = 1,2, … ,𝑚𝑚2 

where, 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦) ,𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦),𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦), and ,𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦)  are continuous and differentiable functions.  
Different approaches are suggested to solve BLP, [11, 14, 15]. The conventional solution 

approach transformed BLP to programming problem. Assume that the 1st level superior , the 
2nd level programming  problem  is replaced with its KKT conditions [16, 17]. This approach is 
used to convert BLP to NPP which solved by using a numerical method. The KKT conditions of 
the 2nd level for BLP are: 

∇𝑦𝑦𝑓𝑓L(𝑥𝑥,𝑦𝑦) + 𝜇𝜇∇𝑦𝑦𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) = 0, 
                                               𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 0,                                                                             (2) 
                          𝜇𝜇𝑗𝑔𝑔𝐿𝐿𝑗𝑗(𝑥𝑥,𝑦𝑦) = 0, 𝑗𝑗 = 1, . . . ,𝑚𝑚2,  
                                  𝜇𝜇𝑗 ≥ 0, 𝑗𝑗 = 1, . . . ,𝑚𝑚2,  

 where 𝜇𝜇 ∈ ℜ𝑚𝑚2 is a Lagrange multiplier vector, see [15]. Then, Problem (1) is : 

 

min
𝑥𝑥,𝑦𝑦

𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦)

𝑠. 𝑡.  𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ≤ 0,
∇𝑦𝑦𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦) + ∇𝑦𝑦𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦)𝜇𝜇 = 0,
𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 0,
𝜇𝜇𝑗𝑔𝑔𝐿𝐿𝑗𝑗(𝑥𝑥,𝑦𝑦) = 0, 𝑗𝑗 = 1, . . . ,𝑚𝑚2

𝜇𝜇𝑗 ≥ 0, 𝑗𝑗 = 1, . . . ,𝑚𝑚2.

 (3) 

Now, in case of the 2nd level is suporior, problem (1) is: 

                                                          

min
𝑥𝑥,𝑦𝑦

𝑓𝑓𝐿𝐿(𝑥𝑥, 𝑦𝑦)

𝑠. 𝑡.  𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 0,
 ∇𝑥𝑥𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦) + ∇𝑥𝑥𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦)𝜇𝜇 = 0,

𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ≤ 0,                                                     
𝜇𝜇𝑗𝑔𝑔𝑈𝑈𝑖𝑖(𝑥𝑥,𝑦𝑦) = 0, 𝑚𝑚 = 1, . . . ,𝑚𝑚1

𝜇𝜇𝑗 ≥ 0, 𝑗𝑗 = 1, . . . ,𝑚𝑚1.

                  (4) 

Remark: 
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It is preferred to solve both problems (4) & (5) and compare the solutions of both problems. If 
the solutions of problems (4) & (5) are the same, then the full optimal solution is found. The best 
one or give all solutions to DM that choose the suitable solution. This idea is shown in examples 
1 &2. 
De�inition 1:  
The optimal solution of problem (1) is said to be full optimal solution if the optimal solution of 
problem (4) & problem (5) is the same. 

Let us describe the methodelgy that combine the penenlty method with trust region 
method on solving one of the reduced poblems . The problem (4) can be summarized as:  

 
min
𝑥̅𝑥

𝑓𝑓𝑈𝑈(𝑥̅𝑥)
𝑠. 𝑡.  𝐷𝑒(𝑥̅𝑥) = 0, 𝑒 ∈ 𝐸,

𝐷𝑖(𝑥̅𝑥) ≤ 0, 𝑚𝑚 ∈ 𝐼,
 (5) 

 where 𝑥̅𝑥 = (𝑥𝑥,𝑦𝑦, 𝜇𝜇)𝑇,𝐸 = {1, . . . , L +𝑚𝑚2}, 𝐼 = {1, . . . , U + 2L}, and 𝐸 ∩ 𝐼 = ∅. Suppose that 
𝑓𝑓𝑈𝑈(𝑥̅𝑥), 𝐷𝑒(𝑥̅𝑥) for all 𝑒 ∈ 𝐸, and 𝐷𝑖(𝑥̅𝑥) for all 𝑚𝑚 ∈ 𝐼 are at least twice continuously differentiable 
functions. 

Motivated by the active-set mechanism in [2], a 0-1 diagonal matrix 𝑍(𝑥̅𝑥) is defined, whose 
diagonal entries are  

 𝑧𝑖(𝑥̅𝑥) = �
1  𝑚𝑚𝑓𝑓  𝑚𝑚 ∈   𝐸,
1  𝑚𝑚𝑓𝑓  𝐷𝑖(𝑥̅𝑥) ≥   0  𝑓𝑓𝑜𝑟  𝑎𝑎𝐿𝐿  𝑚𝑚 ∈   𝐼,
0  𝑚𝑚𝑓𝑓  𝐷𝑖(𝑥̅𝑥)   <   0    𝑓𝑓𝑜𝑟  𝑎𝑎𝐿𝐿  𝑚𝑚 ∈   𝐼.

 (6) 

The equality constrained optimization (ECO) problem is  Prpblem (6) by using 𝑍(𝑥̅𝑥) 

 
min 𝑓𝑓𝑈𝑈(𝑥̅𝑥)
𝑠. 𝑡.  𝑅𝑅(𝑥̅𝑥)𝑇𝑍(𝑥̅𝑥)𝑅𝑅(𝑥̅𝑥) = 0, 

where 𝑅𝑅(𝑥̅𝑥) is the vector function; for more details see[22]. A penalty method ([13], [14]), is 
used to make the above problem  into unconstrained problem.  

 min 𝑓𝑓𝑈𝑈(𝑥̅𝑥) + 𝜌
2
∥ 𝑍(𝑥̅𝑥)𝑅𝑅(𝑥̅𝑥) ∥2

𝑠. 𝑡.  𝑥̅𝑥 ∈ ℜ𝑚𝑚1+𝑚𝑚2+L ,
 (7) 

where 𝜌 ∈ ℜ is a positive parameter. 
The first-order necessary condition for the point 𝑥̅𝑥∗ to be a local minimizer  of Problem (8) 

is  
                                            ∇𝑥̅𝑥𝑓𝑓𝑈𝑈(𝑥̅𝑥∗) + 𝜌∇𝑅𝑅(𝑥̅𝑥∗)𝑍(𝑥̅𝑥∗)𝑅𝑅(𝑥̅𝑥∗) = 0.                                         (8) 

If the point 𝑥̅𝑥∗ meets the first-order necessary conditions of  Problem (6)  [20], then it 
satisfies the condition (9) of Problem (8) but the converse is not necessarily true. The proposed 
algorithm shows that  if  𝑥̅𝑥∗ interpolates the first-order necessary condition of Problem (8), then 
it also achieves the first-order necessary conditions of Problem (6). The suggested trust-region 
for solving to combine the sequential quadratic programming (SQP) method with the trust-
region idea [21].  This method for Problem (8) is  

 min 𝑞𝑘(𝑠𝑘) = 𝑓𝑓𝑈𝑈𝑘 + ∇𝑓𝑓𝑈𝑈𝑘
𝑇 𝑠 + 1

2
𝑠𝑇𝐻𝑘𝑠 + 𝜌𝑘

2
∥ 𝑍𝑘(𝑅𝑅𝑘 + ∇𝑅𝑅𝑘𝑇𝑠) ∥2

𝑠. 𝑡.  ∥ 𝑠 ∥≤ 𝛿𝑘 ,
 (9) 

 where the radius of trust-region is 𝛿𝑘 > 0, and the Hessian of 𝑓𝑓𝑈𝑈(𝑥̅𝑥𝑘) , 𝐻𝑘or an 
approximation to it. 𝑓𝑓𝑈𝑈𝑘 = 𝑓𝑓𝑈𝑈(𝑥̅𝑥𝑘), 𝑅𝑅𝑘 = 𝑅𝑅(𝑥̅𝑥𝑘), ∇𝑓𝑓𝑈𝑈𝑘 = ∇𝑓𝑓𝑈𝑈(𝑥̅𝑥𝑘), ∇𝑅𝑅𝑘 = ∇𝑅𝑅(𝑥̅𝑥𝑘), 𝑍𝑘 = 𝑍(𝑥̅𝑥𝑘) and 
so on.  The trust-region algorithm  solved problem (4)  as follows.  
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The   trial step 𝑠𝑘 is esitmated by using A conjugate gradient method [22] . It is perffered 
when  the Hessian is indefinite or in large-scale problems. 

The subproblem (10)  is solved by :  
 
Algorithm 1 : (Evaluate 𝑠𝑘)  

Step 1. Set 0 = 𝑠0 ∈ ℜ𝑛1+𝑛2+𝑚𝑚2 , 𝑤0 = −(∇𝑓𝑓𝑈𝑈𝑘 + 𝜌𝑘∇𝑅𝑅𝑘𝑍𝑘𝑅𝑅𝑘), and 𝑣0 = 𝑤0. 
Step 2. For 𝑗𝑗 = 1, . . . , (𝑚𝑚1 + 𝑚𝑚2 + 𝑚𝑚4) do  

 Compute 𝑅𝑅𝑘 = 𝐻𝑘 + 𝜌𝑘∇𝑅𝑅𝑘𝑍𝑘∇𝑅𝑅𝑘𝑇. 

Compute 𝑐𝑗 =
𝑤𝑗𝑗
𝑇𝑤𝑗𝑗

𝑣𝑗𝑗
𝑇𝐵𝑘𝑣𝑗𝑗

. 

Compute 𝛾𝑗  such that ∥ 𝑠𝑗 + 𝛾𝑗𝑣𝑗 ∥= 𝛿𝑘 . 
If 𝑣𝑗𝑇𝑅𝑅𝑘𝑣𝑗 ≤ 0, then set 𝑠𝑘 = 𝑠𝑗 + 𝛾𝑗𝑣𝑗 and Stop. 
Else, set 𝑠𝑗+1 = 𝑠𝑗 + 𝑐𝑗𝑣𝑗 and  
𝑤𝑗+1 = 𝑤𝑗 − 𝑐𝑗𝑅𝑅𝑘𝑣𝑗. 
If 𝑤𝑗𝑗+1

𝑤0
≤ 𝜀0, set 𝑠𝑘 = 𝑠𝑗+1 and Stop. 

Compute 𝑞�𝑗 =
𝑤𝑗𝑗+1
𝑇 𝑤𝑗𝑗+1

𝑤𝑗𝑗
𝑇𝑤𝑗𝑗

 and the new direction is 

𝑣𝑗+1 = 𝑤𝑗+1 + 𝑞�𝑗𝑣𝑗.  
The following merit function is tested 𝑠𝑘 is accepted or not 

 ℓ(𝑥̅𝑥𝑘;𝜌𝑘) = 𝑓𝑓𝑈𝑈(𝑥̅𝑥𝑘) + 𝜌𝑘
2
∥ 𝑍(𝑥̅𝑥𝑘)𝑅𝑅(𝑥̅𝑥𝑘) ∥2. (10) 

 An actual reduction 𝐴𝑟𝑒𝑎𝑎𝑘 and a predicted reduction 𝑅𝑅𝑟𝑒𝑎𝑎𝑘 in the merit function is used to 
test 𝑥̅𝑥𝑘+1 = 𝑥̅𝑥𝑘 + 𝑠𝑘 takes as a next iterate or not. 𝐴𝑟𝑒𝑎𝑎𝑘 (11) is evaluted  as follows  

 𝐴𝑟𝑒𝑎𝑎𝑘 = 𝑓𝑓𝑈𝑈(𝑥̅𝑥𝑘)− 𝑓𝑓𝑈𝑈(𝑥̅𝑥𝑘+1) + 𝜌𝑘
2

[∥ 𝑍𝑘𝑅𝑅𝑘 ∥2 −∥ 𝑍𝑘+1𝑅𝑅𝑘+1 ∥2], (11) 
 and 𝑅𝑅𝑟𝑒𝑎𝑎𝑘 is defined as  

 𝑅𝑅𝑟𝑒𝑎𝑎𝑘 = 𝑞𝑘(0)− 𝑞𝑘(𝑠𝑘) (12) 
 = −∇𝑓𝑓𝑈𝑈𝑘

𝑇 𝑠𝑘 −
1
2
𝑠𝑘𝑇𝐻𝑘𝑠𝑘 + 𝜌𝑘

2
[∥ 𝑍𝑘𝑅𝑅𝑘 ∥2 −∥ 𝑍𝑘(𝑅𝑅𝑘 + ∇𝑅𝑅𝑘𝑇𝑠𝑘) ∥2]. (13) 

  
Algorithm 2 : (Test 𝑠𝑘 and update , 𝛿𝑘  algorithm)  

Choose 0 < 𝜏1 < 𝜏2 ≤ 1, 𝛿max > 𝛿min, and 0 < 𝜂1 < 1 < 𝜂2.  
 Let 𝑟𝑘 = 𝐴𝑟𝑒𝑑𝑘

𝑃𝑟𝑒𝑑𝑘
. 

While 𝑟𝑘 < 𝜏1, or 𝑅𝑅𝑟𝑒𝑎𝑎𝑘 ≤ 0.  
 Set 𝛿𝑘 = 𝜂1 ∥ 𝑠𝑘 ∥. 
Evaluate a new 𝑠𝑘.  
 If 𝜏1 ≤ 𝑟𝑘 < 𝜏2, then set 𝑥̅𝑥𝑘+1 = 𝑥̅𝑥𝑘 + 𝑠𝑘. 
𝛿𝑘+1 = max(𝛿𝑘 ,𝛿min). 
End if. 
If 𝑟𝑘 ≥ 𝜏2, then set 𝑥̅𝑥𝑘+1 = 𝑥̅𝑥𝑘 + 𝑠𝑘. 
𝛿𝑘+1 = min{𝛿max, max{𝛿min,𝜂2𝛿𝑘}}. 
End if.  

A scheme suggested by [22]  updated the parameter 𝜌𝑘 > 0 which  presented in the   
following algorithm.  
Algorithm 3 :   

 Compute 𝑅𝑅𝑟𝑒𝑎𝑎𝑘 given by (15).  
 If  𝑅𝑅𝑟𝑒𝑎𝑎𝑘 ≥∥ ∇𝑅𝑅𝑘𝑍𝑘𝑅𝑅𝑘 ∥ min{∥ ∇𝑅𝑅𝑘𝑍𝑘𝑅𝑅𝑘 ∥,𝛿𝑘}. (14) 

               Set 𝜌𝑘+1 = 𝜌𝑘. 
Else, set 𝜌𝑘+1 = 2𝜌𝑘. 
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End if  
The stopping criteria when either ∥ ∇𝑓𝑓𝑈𝑈𝑘 ∥ +∥ ∇𝑅𝑅𝑘𝑍𝑘𝑅𝑅𝑘 ∥≤ 𝜀1 or ∥ 𝑠𝑘 ∥≤ 𝜀2 for some 
tolerances 0 < 𝜀1 and 0 < 𝜀2. 

 
The steps of suggested mehod:  

Algorithm 4  
Step 0: Given 𝑥̅𝑥0 ∈ ℜ(𝑛1+𝑛2+𝑚𝑚2). Choose 0 < 𝜀1, 0 < 𝜀2, 𝜏1, 𝜏2, 𝜂1, and 𝜂2, such that 

0 < 𝜏1 < 𝜏2 ≤ 1 and 0 < 𝜂1 < 1 < 𝜂2. Choose 𝛿min, 𝛿max, and 𝛿0 such that 
𝛿min ≤ 𝛿0 ≤ 𝛿max. Set 𝜌0 = 1. Set 𝑘 = 0. 

Step 1: If ∥ ∇𝑓𝑓𝑈𝑈𝑘 ∥ +∥ ∇𝑅𝑅𝑘𝑍𝑘𝑅𝑅𝑘 ∥≤ 𝜀1, then stop the algorithm. 
Step 2: Using Algorithm (1) to compute 𝑠𝑘. 
Step 3: If ∥ 𝑠𝑘 ∥≤ 𝜀2, then the algorithm stops. 
Step 4: Set 𝑥̅𝑥𝑘+1 = 𝑥̅𝑥𝑘 + 𝑠𝑘. 
Step 5: Compute 𝑍𝑘+1 given by (8). 
Step 6: Test the step and update using Algorithm (2). 
Step 7: Update 𝜌𝑘 using Algorithm (3). 
Step 8: Set 𝑘 = 𝑘 + 1 and go to Step 1.  
 

3. Numerical examples 
The idea of the new methodology can be presented in the following examples: 
         Example 1: 

min
𝑥𝑥1

𝑓𝑓𝑈𝑈 = 𝑥𝑥13𝑥𝑥2 + 𝑥𝑥3 

                                                  S.T:                𝑥𝑥1 + 2𝑥𝑥2 + 𝑥𝑥3 ≤ 6, 
𝑥𝑥12 + 𝑥𝑥2 + (𝑥𝑥3 − 1)2 ≤ 6,  

𝑥𝑥1 ≥ 0 
min
𝑥𝑥2,𝑥𝑥3

𝑥𝑥1 + 𝑥𝑥22 + 𝑥𝑥3 + 2 

                                                  S.T            𝑥𝑥1 + 𝑥𝑥2 + 3𝑥𝑥3 ≤ 10, 
−𝑥𝑥1 + 𝑥𝑥23 + 2𝑥𝑥3 ≤ 2, 

𝑥𝑥2 ≥ 0,𝑥𝑥3 ≥ 0 
By using the reduction formulas, and solving them using algorithm 4 the optimal solution of 

problems (4)&(5) is 
 𝑥𝑥1 = 0, 𝑥𝑥2 = 0, 𝑥𝑥3 = 0. 
Example 2: 

min
𝑥𝑥1,𝑥𝑥2

𝑓𝑓𝑈𝑈 = (𝑥𝑥1 − 3)2 + 𝑥𝑥2 + (𝑥𝑥3 − 2)2 

                                                S.T:               𝑥𝑥1 + 𝑥𝑥22 − 2𝑥𝑥3 + 6 ≥ 0, 
𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 − 9 ≤ 0,  

𝑥𝑥1 ≥ 0,𝑥𝑥2 ≥ 0 
min
𝑥𝑥3

𝑓𝑓𝐿𝐿 = 𝑥𝑥1 − 3𝑥𝑥2 + (𝑥𝑥3 − 5)2 

                                               S.T:                       𝑥𝑥1 + 2𝑥𝑥2 + 𝑥𝑥33 ≤ 12, 
𝑥𝑥3 ≥ 0 

By using the reduction formulas the problem is transformed to a single programming 
problems, and solving them using algorithm 4 the optimal solution of problems (4) is 
(3.25,4.368,0.224), 𝑓𝑓𝑈𝑈 = 7.514,𝑓𝑓𝐿𝐿 = 12.766. And The solution of problem by using problem 
formulation (5) is (3,0,3),𝑓𝑓𝑈𝑈 = 0,𝑓𝑓𝐿𝐿 = 7. As shown the solution from formulation problem (4) is 
better than the solution found from problem(5). 
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RBNPP consist of two levels, namely, the 1st and/or 2nd levels each having its rough function 
and/or constraints are rough set is presented as:  

 
 

min
𝑥𝑥
𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦)    

                                                   S.T:              𝑥𝑥 ∈ 𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦)                                                                                                     
(15) 

min
𝑦𝑦
𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦) 

                                                    S.T:                  𝑦𝑦 ∈ 𝑔𝑔𝐿𝐿(𝑥𝑥, 𝑦𝑦) 
where, 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦) ≤ 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦) ≤ 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦) ,𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦),𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ⊆ 𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ⊆

𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ,𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ⊆ 𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ⊆ 𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦), and  𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦),𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦),𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦),𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦)  ,𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦), 
𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦),𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦), ,𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦)  are functions at least �irst continuously differentiable functions. 

 The solution procedure and solution de�initions of different situations of roughness in BLP 
are presented. 

 
4.1 RBNPP when roughness  on the constrains only: 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐 is 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 are deterministic is de�ined:  

min
𝑥𝑥
𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦)    

                                                   S.T:                       𝑥𝑥 ∈ 𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦)                                                                                                          
(16) 

min
𝑦𝑦
𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦) 

                                                    S.T:                  𝑦𝑦 ∈ 𝑔𝑔𝐿𝐿(𝑥𝑥, 𝑦𝑦) 
 

where, 𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ⊆ 𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ⊆ 𝑔𝑔𝑈𝑈(𝑥𝑥, 𝑦𝑦) ,𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ⊆ 𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ⊆ 𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦), and  𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦),𝑓𝑓𝐿𝐿(𝑥𝑥, 𝑦𝑦)  
,𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦),𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦),𝑔𝑔𝐿𝐿(𝑥𝑥, 𝑦𝑦), and 𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) are functions assumed to be at least �irst continuously 
differentiable functions. The classical idea divided the problem into four subproblems and 
solved them individually as shown in table 1.  

Table 1. RBNPP when roughness on the constrains and objective function is deterministic 

𝐶𝐶𝑅𝑅1 𝐶𝐶𝑅𝑅2 𝐶𝐶𝑅𝑅3 𝐶𝐶𝑅𝑅4 

min𝑥𝑥 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦)                                                          
S. T: 𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ≤ 0                                                                      

min𝑥𝑥 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦)                                    
S. T: 𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ≤ 0                                                                    

min𝑥𝑥 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦)                                  
S. T:𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ≤ 0 

min𝑥𝑥 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦)                                      
S. T:𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ≤ 0                                                                     

min𝑦𝑦 𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦)                                                  
S. T:𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 0 

min𝑦𝑦 𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦)                                   
S. T:𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 0 

min𝑦𝑦 𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦)                                   
S. T:𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 0 

min𝑦𝑦 𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦)                                   
S. T:𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 0 

 
 Let us show the procedure of solving  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐 at �lowchart 1. 
 
 

4. Rough bilevel nonlinear programming problem: 
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Figure 1. Flowchart 1 (Procedure solution for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐) 

Definition 2: The surely optimal solution set for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐. The optimal solution set 𝐴1 �𝐴1 = 𝐴 ∩

𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ∩ 𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦)� is the surely optimal solution set of the problem (16), if 𝐴1 ≠ ∅. 
Definition 3: The surely optimal solution set to 1st level and possibly optimal solution to 2nd level 
for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐 . 𝐴3  is the surely optimal solution set to 1st level and possibly optimal solution to 
2nd level where 𝐴3 is the optimal solution set of 𝐶𝐶𝑅𝑅3 if 𝐴3 ≠ ∅. 
Definition 4: The possibly optimal solution set to 1st level and surely optimal solution to 2nd level 
for  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐. The optimal solution set of 𝐶𝐶𝑅𝑅2 is 𝐴2  is called the possibly optimal solution set to 
1st level and surely optimal solution to 2nd level if 𝐴2 ≠ ∅. 
Definition 5: The possibly optimal solution set for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐. The optimal solution set 𝐴4  is the 
possibly optimal solution set to 1st level and possibly optimal solution to 2nd level if 
𝐴4 = 𝐴 ∩ 𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ∩ 𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦),𝐴4 ∉ 𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ∩ 𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦).  
Example 3: 

min
𝑥𝑥1,𝑥𝑥2

𝑓𝑓𝑈𝑈 = 16𝑥𝑥12 + 9𝑥𝑥22 

                                                S.T: 
 (𝑥𝑥1,𝑥𝑥2) ∈ 𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2) 

min
𝑥𝑥3

𝑓𝑓𝐿𝐿 = (𝑥𝑥1 + 𝑥𝑥2 − 5)2 

                                               S.T 
(𝑥𝑥1, 𝑥𝑥2) ∈ 𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2) 

where 𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2) ⊆ 𝑔𝑔𝑈𝑈(𝑥𝑥1, 𝑥𝑥2) ⊆ 𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2), 
 𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2) = {(𝑥𝑥1,𝑥𝑥2) ∈ 𝑅𝑅2|−5𝑥𝑥1 + 𝑥𝑥2 − 1 ≤ 0, 𝑥𝑥1 ≥ 0}, 
𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2) = {(𝑥𝑥1, 𝑥𝑥2) ∈ 𝑅𝑅2|−4𝑥𝑥1 + 𝑥𝑥2 ≤ 0, 𝑥𝑥1 ≥ 0}.𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2) ⊆ 𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2) ⊆ 𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2), 

𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2) = {(𝑥𝑥1,𝑥𝑥2) ∈ 𝑅𝑅2|𝑥𝑥1 + 𝑥𝑥2 ≤ 60, 𝑥𝑥2 ≥ 0},𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2) =
{(𝑥𝑥1,𝑥𝑥2) ∈ 𝑅𝑅2| 4𝑥𝑥1 + 𝑥𝑥2 ≤ 50,𝑥𝑥2 ≥ 0}. 
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The solution: 
𝐶𝐶𝑅𝑅1is solved,  𝐴 = {(7.2,12.8)}, 𝐴1 = {(7.2,12.8)} which satifices the  𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2)& 𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2) 
constrains so the optimun values are 𝑓𝑓𝑈𝑈 = 2304,𝑓𝑓𝐿𝐿 = 0 . 
Example 4: 

min
𝑥𝑥1,𝑥𝑥2

𝑓𝑓𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) = (𝑥𝑥1 − 3)2 + (𝑥𝑥3 − 4𝑥𝑥2 + 1)2 + 𝑥𝑥4 

                                                S.T: 
(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) ∈ 𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) 

min
𝑥𝑥3,𝑥𝑥4

𝑓𝑓𝐿𝐿(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) = (𝑥𝑥1 + 2𝑥𝑥3)2 + 𝑥𝑥2 − 3𝑥𝑥4 

                                               S.T 
(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) ∈ 𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) 

where 𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) ⊆ 𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) ⊆ 𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4), 

𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) = �(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) ∈ 𝑅𝑅4� 2𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥23 + 𝑥𝑥4 − 6 ≥ 0,
𝑥𝑥1 + 2𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 − 30 ≤ 0, 𝑥𝑥1 ≥ 0, 𝑥𝑥2 ≥ 0�, 

𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) = �(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) ∈ 𝑅𝑅4� 3𝑥𝑥1 − 2𝑥𝑥2 + 𝑥𝑥23 − 2𝑥𝑥4 − 6 ≥ 0,
2𝑥𝑥1 + 3𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 − 30 ≤ 0, 𝑥𝑥1 ≥ 0, 𝑥𝑥2 ≥ 0�, 

𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) ⊆ 𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) ⊆ 𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4), 

𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) = �(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) ∈ 𝑅𝑅4�𝑥𝑥1 + 1
2
𝑥𝑥23 + 2𝑥𝑥3 + 𝑥𝑥42 ≤ 40,𝑥𝑥3 ≥ 0, 𝑥𝑥4 ≥ 0�, 

𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) = {(𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) ∈ 𝑅𝑅4�2𝑥𝑥1 + 𝑥𝑥23 + 4𝑥𝑥3 + 𝑥𝑥42 ≤ 40,𝑥𝑥3 ≥ 0, 𝑥𝑥4 ≥ 0}. 
 

The solution:  
we form problems 𝐶𝐶𝑅𝑅1,𝐶𝐶𝑅𝑅2,𝐶𝐶𝑅𝑅3 and 𝐶𝐶𝑅𝑅4  as table1.  First solve  𝐶𝐶𝑅𝑅1 problem, the solution  is  
𝐴 = {(3,0.25,0,6.08)},𝑓𝑓𝑈𝑈 = 7.08,𝑓𝑓𝐿𝐿 = −8.99,𝐴1 = ∅,𝐴2 = ∅,𝐴3 = ∅. Solve problem 𝐶𝐶𝑅𝑅2, the 
solution set is 𝐴2 = {(3,0.25,0,1.25)},𝑓𝑓𝑈𝑈 = 2.25,𝑓𝑓𝐿𝐿 = 5.5. Solve problem 𝐶𝐶𝑅𝑅3, the solution set 
is 𝐴3 = {(3,0.25,0,5.8296)},𝑓𝑓𝑈𝑈 = 6.8296,𝑓𝑓𝐿𝐿 = −8.2388. The solution set of 𝐶𝐶𝑅𝑅4 
= {(3,0.25,0,1.25)},𝑓𝑓𝑈𝑈 = 2.25,𝑓𝑓𝐿𝐿 = 5.5. As we see in this example all problems are solved 
because there is no cooperation with DM. If there is any cooperaton with DM, the number of 
problem will be less than four problems.  
 
4.2 RBNPP when roughness on the objective function only: 
The second stuatition 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜 when  roughness on the objective function and the constrians are 
deterministic.  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜 can be defined as following: 

min
𝑥𝑥
𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦)    

                                                   S.T:                    𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ≤ 0                                                                                                           
(17) 

min
𝑦𝑦
𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦) 

                                                    S.T:                  𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 0 
 
where, 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦) ≤ 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦) ≤ 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦) ,𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦), and  𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦),𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦), 

𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦),𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦)  ,𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦), and 𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦)  are functions assumed to be at least �irst continuously 
differentiable functions.  

This problem can be also divided into four problems as shown in table 2.  The solution 
procedure for solving 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜is presented in �lowchart 2. 
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Table 2. RBNPP when roughness on the objective function and the constrains are deterministic 

𝐹𝐹𝑅𝑅1 𝐹𝐹𝑅𝑅2 𝐹𝐹𝑅𝑅3 𝐹𝐹𝑅𝑅4 

𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦)                                                        
S.T:𝑔𝑔𝑈𝑈(𝑥𝑥, 𝑦𝑦) ≤ 0 

min𝑥𝑥 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦)                                    
S.T:𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ≤ 0 

𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 𝑓𝑓𝑈𝑈(𝑥𝑥, 𝑦𝑦)                                    
S.T:𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ≤ 0 

min𝑥𝑥 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦)                                      
S.T:𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ≤ 0 

𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦 𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦)                                                       
S.T:𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 0 

min𝑦𝑦 𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦)                                   
S.T:𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 0 

𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦 𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦)                                   
S.T:𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 0 

 

min𝑦𝑦 𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦)                                   
S.T:𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) ≤ 0 

 
Definition 5:  The surely optimal solution set for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜 .The optimal solution set 𝑅𝑅1 = {(𝑥𝑥,𝑦𝑦) ∈
𝑅𝑅|𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦) = 𝑓𝑓𝑈𝑈 and 𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦) = 𝑓𝑓𝐿𝐿}  is the surely optimal solution set of the problem (4), if 
𝑅𝑅1 ≠ ∅. 
Definition 6: The surely optimal solution set to 1st level and possibly optimal solution to 2nd level 
for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜 . The optimal solution set (𝑅𝑅3) of 𝐹𝐹𝑅𝑅3  is the surely optimal solution set to 1st level 
and possibly optimal solution to 2nd level if 𝑅𝑅3 ≠ ∅. 
Definition 7:  The possibly optimal solution set to 1st level and surely optimal solution to 2nd level 
for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜 .𝑅𝑅2 is the possibly optimal solution set to 1st level and surely optimal solution to 
2nd level if 𝑅𝑅2 ≠ ∅ where  𝑅𝑅2 is the optimal solution set of 𝐹𝐹𝑅𝑅2. 
Definition 8: The possibly optimal solution set for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜 
 𝑅𝑅4 �𝑅𝑅4 = {(𝑥𝑥,𝑦𝑦) ∈ 𝑅𝑅|𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦) = 𝑓𝑓𝑈𝑈,𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦) ≠ 𝑓𝑓𝑈𝑈,𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦) = 𝑓𝑓𝐿𝐿,𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦) ≠ 𝑓𝑓𝐿𝐿}�is the possibly 
optimal solution set to 1st level and possibly optimal solution to 2nd level. 

 

 
 

Figure 2. Flowchart 2 (The solution procedure for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜  ) 
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Example 5: 

min
𝑥𝑥1,𝑥𝑥2

𝑓𝑓𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) 

                                                S.T: 
2𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥23 + 𝑥𝑥4 − 6 ≥ 0, 
𝑥𝑥1 + 2𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 − 30 ≤ 0, 

 𝑥𝑥1 ≥ 0,𝑥𝑥2 ≥ 0 
 

min
𝑥𝑥3,𝑥𝑥4

𝑓𝑓𝐿𝐿(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) 

                                               S.T 

𝑥𝑥1 +
1
2
𝑥𝑥23 + 2𝑥𝑥3 + 𝑥𝑥42 ≤ 40, 
𝑥𝑥3 ≥ 0, 𝑥𝑥4 ≥ 0 

where 𝑓𝑓𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) ≤ 𝑓𝑓𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) ≤ 𝑓𝑓𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4), 𝑓𝑓𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) =
(𝑥𝑥1 + 1)2 + (𝑥𝑥3 + 𝑥𝑥2)2+𝑥𝑥4,𝑓𝑓𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) = (𝑥𝑥1 − 3)2 + (𝑥𝑥3 − 2𝑥𝑥2 + 1)2 + 𝑥𝑥4, 

𝑓𝑓𝐿𝐿(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) ≤ 𝑓𝑓𝐿𝐿(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) ≤ 𝑓𝑓𝐿𝐿(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4), 𝑓𝑓𝐿𝐿(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) = (2𝑥𝑥1 + 3𝑥𝑥3)2 + 𝑥𝑥23 +
𝑥𝑥4, 𝑓𝑓𝐿𝐿(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) = (𝑥𝑥1 + 2𝑥𝑥3)2 + 𝑥𝑥2 − 3𝑥𝑥4. 

 The solution: We form problems 𝐹𝐹𝑃𝑃1,𝐹𝐹𝑃𝑃2,𝐹𝐹𝑃𝑃3 and 𝐹𝐹𝑃𝑃4  as table 1.  First  solve 𝐹𝐹𝑃𝑃1 
problem, the solution is  𝐵𝐵 = {(3,0.25,0,6.08)},𝑓𝑓𝑈𝑈 = 6.33,𝑓𝑓𝐿𝐿 = −8.73,𝐵𝐵1 = ∅,𝐵𝐵2 = ∅,𝐵𝐵3 = ∅. 
Solve problem 𝐹𝐹𝐹𝐹2, the solution set is 𝐵𝐵2 = {(3,0.25,0,6.08)},𝑓𝑓𝑈𝑈 = 6.33,𝑓𝑓𝐿𝐿 = −8.73. Solve 
problem 𝐹𝐹𝐹𝐹3, the solution set is 𝐵𝐵3 = {(3,0.25,0,6.08)},𝑓𝑓𝑈𝑈 = 6.33,𝑓𝑓𝐿𝐿 = −8.73. The solution set of 
𝐹𝐹𝑃𝑃4 is  {(0,0,0,0)},𝑓𝑓𝑈𝑈 = 1,𝑓𝑓𝐿𝐿 = 0.  

 
 
4.3 RBNPP when roughness on the objective function and the constrians : 
The third  stuatition when  rough on both the objective function level and the constrians. It can 
divided into sixteen problems as showen in table 3. The sutiable solution procedure here, solve 
problem 𝑃𝑃1,  𝐶𝐶 is the optimal solution set and 𝑓𝑓𝑈𝑈, 𝑓𝑓𝐿𝐿 are optimum values. Find 𝐶𝐶1 = {(𝑥𝑥,𝑦𝑦) ∈

𝐶𝐶|𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦) = 𝑓𝑓𝑈𝑈 ,𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦) = 𝑓𝑓𝐿𝐿, (𝑥𝑥,𝑦𝑦) ∈ {𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ∩ 𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦)} } . If 𝐶𝐶1 ≠ ∅, then is called the surely 
optimal solution set of the problem (1) which contains all surely optimal solution.  If 𝐶𝐶1 = ∅, �ind 
𝐶𝐶2 = {(𝑥𝑥,𝑦𝑦) ∈ 𝐶𝐶| 𝑓𝑓𝑈𝑈(𝑥𝑥,𝑦𝑦) = 𝑓𝑓𝑈𝑈 ,𝑓𝑓𝐿𝐿(𝑥𝑥,𝑦𝑦) = 𝑓𝑓𝐿𝐿 , (𝑥𝑥,𝑦𝑦)}, 𝐶𝐶3 = 𝐶𝐶 ∩ 𝑔𝑔𝑈𝑈(𝑥𝑥,𝑦𝑦) ∩ 𝑔𝑔𝐿𝐿(𝑥𝑥,𝑦𝑦) . If 𝐶𝐶2 ≠ ∅, we 
will solve our problem as the procedure introduced in second situation. If 𝐶𝐶3 ≠ ∅, we will solve 
our problem as the procedure introduced in 1st situation. Or we can solve  𝑃𝑃1 and  𝑃𝑃16 problems 
only because they give overall veiwe of the problem its optimu values varies. 
 
Example 6: 

min
𝑥𝑥1,𝑥𝑥2

𝑓𝑓𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) 

                                                S.T: 
(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) ∈ 𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) 

 
min
𝑥𝑥3,𝑥𝑥4

𝑓𝑓𝐿𝐿(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) 

                                               S.T 
(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) ∈ 𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) 
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where 𝑓𝑓𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) ≤ 𝑓𝑓𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) ≤ 𝑓𝑓𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4),  

𝑓𝑓𝑈𝑈(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) = (𝑥𝑥1 + 𝑥𝑥4 + 1)2 + (𝑥𝑥3 + 𝑥𝑥2)2,𝑓𝑓𝑈𝑈(𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) = (𝑥𝑥1 − 3)2 +
(𝑥𝑥3 − 2𝑥𝑥2 + 1)2 + 𝑥𝑥4,  
𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) ⊆ 𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) ⊆ 𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4),𝑔𝑔𝑈𝑈(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) =

�(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) ∈ 𝑅𝑅4� 3𝑥𝑥1 − 2𝑥𝑥2 + 𝑥𝑥23 − 4𝑥𝑥4 + 6 ≥ 0,
𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 − 30 ≤ 0, 𝑥𝑥1 ≥ 0, 𝑥𝑥2 ≥ 0�,𝑔𝑔𝑈𝑈

(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) =

�(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) ∈ 𝑅𝑅4� 3𝑥𝑥1 − 2𝑥𝑥2 + 𝑥𝑥23 − 4𝑥𝑥4 + 6 ≥ 0,
2𝑥𝑥1 + 3𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 − 30 ≤ 0, 𝑥𝑥1 ≥ 0, 𝑥𝑥2 ≥ 0�,𝑓𝑓𝐿𝐿(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) ⊆

𝑓𝑓𝐿𝐿(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) ⊆ 𝑓𝑓𝐿𝐿(𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3,𝑥𝑥4),𝑓𝑓𝐿𝐿(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) = 𝑥𝑥23 + (2𝑥𝑥1 + 3𝑥𝑥3)2 + 𝑥𝑥4, 
𝑓𝑓𝐿𝐿(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) = 𝑥𝑥2 + (𝑥𝑥1 + 2𝑥𝑥3)2 − 3𝑥𝑥4,𝑔𝑔𝐿𝐿(𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) ⊆ 𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) ⊆
𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4),𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) =
{(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) ∈ 𝑅𝑅4�𝑥𝑥1 + 𝑥𝑥23 + 𝑥𝑥3 + 𝑥𝑥42 ≤ 40, 𝑥𝑥3 ≥ 0, 𝑥𝑥4 ≥ 0},𝑔𝑔𝐿𝐿(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) =
{(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) ∈ 𝑅𝑅4�3𝑥𝑥1 + 𝑥𝑥23 + 4𝑥𝑥3 + 𝑥𝑥42 ≤ 40,𝑥𝑥3 ≥ 0, 𝑥𝑥4 ≥ 0}. 

 
The solution:we solve only 𝑃𝑃1 and  𝑃𝑃16 problems as we discussed before to take overall 

veiwe of the problem  and its optimu values varies. If the DM sharing with the mathamtic the 
solution, he guied the mathamtic to how to solve the problem.   
 
Conclusion: 
This paper introduced an interactive approach for RBNPP solution. A new methodology is 
presented for solving BNPP taken into consideration which level is more important than the 
other.  This methodology converted BNPP to a crisp unconstrained programming problem. The 
unconstrained programming problem is solved by a trust region penalty method. The solution 
procedures are discussed. The de�initions of all types of solutions are presented. 

The signi�icant contributions of this paper:  
• Introducing an interactive approach procedure between the mathematics and DM for   

solving RBNPP. 
• Presenting an algorithm for solving BLP taken into consideration which level is more 

important than the other. 
• Presenting the solution procedures of solving different types of roughness in BLP. 
• The definitions of all types of solutions for different types of roughness in this 

problem are presented. 
•  For future work, this approach can be further expanded to treat the real problems 

using artificial intelligent algorithms or any techniques that handle the multilevel 
programming problems.  
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