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Abstract. This paper presents how smart contracts are based on mathematics. 
Smart contracts rely on mathematics to guarantee their immutability, security, 
and enforceability. Cryptographic procedures that are used to safeguard and 
con�irm the contract's implementation, including hash functions and digital 
signatures, might be used to illustrate this. Mathematical approaches known as 
hash functions embrace an input of arbitrary size and generate a �ixed-size digest 
or hash. It is impossible to go backwards the process and ascertain the input 
from the outcome since the outcome is speci�ic to the input. Digital signature 
techniques are used for digitally signing smart contracts. The most well-known 
digital signature schemes—Schnorr, Elgamal, and Elliptic curve schemes—that 
are employed in smart contracts are described in this research. 

1. Introduction 

In simple terms, smart contracts are blockchain-based algorithms that operate when speci�ic 
criteria are satis�ied [1]. Generally speaking, they are employed in order to streamline the 
implementation of an agreement to guarantee that both parties can be con�ident of the result 
right away, without the need for a middleman or delay [2]. They can be additionally 
incorporated into different payment methods and digital trades, which may involve bitcoin and 
other cryptocurrencies like Ethereum and Bitcoin, and they may execute a procedure that starts 
the next activity when speci�ic criteria are ful�illed [3]. Since the information contained in the 
blocks of a smart contract is encrypted and saved on a common ledger, the risk of data loss is 
practically unattainable [4]. Ethereum is the most commonly employed cryptocurrency platform 
and the most widely adopted smart contract platform. The Solidity programming language was 
created by the Ethereum community and is intended to be used to create smart contract 
programs that operate on the Ethereum Virtual Machine (EVM) implementation framework [5]. 
Nick Szabo �irst put forth the idea of smart contracts in 1994. Szabo is a cryptographer and law 
professor who is credited with creating digital currency [6]. Since there was no distributed 
ledger system or digital infrastructure to enable them back then, there was not much interest in 
or development around smart contracts. As an aspect of their studies on the Ricardo payment 
mechanism for asset transfers, Ian Grigg and Gary Howland released a notion known as 
Ricardian Contracts in 1996, which is also where today's smart contracts get their start [7]. A 

https://creativecommons.org/licenses/by/4.0/
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decentralized ledger system on a blockchain network was employed for the development of 
bitcoin cryptocurrency in 2008 [8]. The creation of smart contract software, which adds the 
conditions of the contract to the blockchain, was made possible by this form of technology. 
Straightforward "if/when...then..." phrases that are encoded into software on a blockchain are 
how smart contracts operate [9]. After certain criteria are satis�ied and con�irmed, a computer 
network puts the plans into action. These could include issuing tickets, contacting individuals, 
registering a car, and paying money to the appropriate parties [10]. After the transaction is 
�inished, the blockchain is refreshed. This implies that the deal is completed and that the 
outcomes are only visible to those who have been given approval [11]. 

In order to ensure the security, immutability, and enforceability of these deals, smart 
contracts' mathematics is essential [12]. Hash functions and Digital signatures are two examples 
of cryptographic procedures that are used to safeguard and con�irm the ful�ilment of the 
contract. A contract's conditions are encoded using boolean algebra and logical gates so that a 
computer can comprehend and process them. Basic elements of digital circuits that carry out 
Boolean logic operations like AND, OR, and NOT are known as logical gates [13]. By combining 
these procedures, more intricate logic circuits that represent the terms and circumstances of a 
contract can be made. The development and evaluation of smart contracts may also make use of 
additional mathematical strategies and concepts, such as mathematical proof and �inite state 
machines [14]. By using these mathematical techniques, it is possible to make sure that the 
conditions of the deal are correctly implemented and that the contract will function as planned 
[15].  

In this research, hash functions and a special version (SHA-256) are outlined in section two. 
In section three, digital signatures and the most famous schemes are explained. 

2. Hash Functions 

Mathematical approaches known as hash functions accept an input of arbitrary size and provide 
a �ixed-size digest or hash. It is impossible to reverse the procedure and ascertain the input from 
the outcome because the outcome is distinct from the input [16]. Since every modi�ication to the 
data leads to in a new hash, hash functions are employed to safeguard and validate data stored 
on blockchains. To guarantee blockchain security, cryptographers created Secure Hash 
Algorithms [17]. 

Secure Hash Algorithms (SHA) are a group of cryptographic operations that are intended to 
maintain data security. It operates by applying a hash function, which is a method made up 
compression procedures, bitwise processes, and modular additions, to modify the data [18].  

 
The result of the hash function is a �ixed-size string that is completely unlike the initial 

string. Since these techniques are a single direction functions, it is nearly hard to change them to 
return the original data once they have been converted into their corresponding hash values 
[19]. SHA-1, SHA-2, and SHA-3 are a few noteworthy algorithms that were developed with 
progressively stronger encryption in response to hacker attempts. For example, SHA-0 is no 
longer relevant because of the extensively known weaknesses [20]. 
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Figure 1. Block chain structure including hash functions.  

 

SHA comes in three versions: SHA-1, SHA-2, and SHA-3. Cryptographers revised the process 
to create SHA-2 since SHA-1's �laws were revealed. SHA-2 creates two unique hash functions, 
SHA-256 and SHA-512, using 32- and 64-bit pieces [21]. The remaining half of the algorithm can 
also be used with these hash functions (SHA-224, SHA-384, SHA-512/224, and SHA-512/256); 
they are all condensed variants using various constants but follow the same general procedure 
[22]. The different SHA-2 variants' unit sizes are as follows: 

• SHA-2 with output size of 224 /512 bits 
• SHA-2 with output size of 256 / 512 bits 
• SHA-2 with output size of 384 / 1024 bits 
• SHA-2 with output size of 512 / 1024 bits 
• SHA-2 with output size of 512 or 224 /1024 bits 
• SHA-2 with output size of 512 or256 / 1024 bits 
For SHA-512/256, SHA-512/224 and SHA-384, SHA-512, and the �illing strategy is 

practically identical; the only differences are that every single block needs to include data bits of 
1024bits and that the last block differs in the ways listed below:[21] 

• The second phase inserts zeros until 896 bits are created, rather of using 448 bits.  
• Providing 128 bits of the block to be included in the message size is the �inal step.  
In order to include each element of the data in addition to no less than a single digit of 

padding, the information is divided into multiple blocks as needed. At the end of the last block, 
the length of 64-bit message is joined.  

2.1 SHA-256  
SHA-256 works in this manner: [23] 

• Phase One: Preparation of the message by including padding to its length  
Padding is included to coincide with the length of the original message with 448 modulo 
512. As many 0s as needed are inserted after one 1 for padding. Following padding, 
space is utilized to add the length of the primary text in order to achieve the required 
length. 
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• Phase Two: Initializing hash buffer. 

The intermediate and �inal compression function outcomes are stored by SHA-256 in 
eight 32-bit buffers, designated as a, b, c, d, e, f, g, and h. These encoded (hexadecimal) 
constants correspond to the primary 32 bits of the fractional portions of the square 
roots of the initial eight prime integers: 2, 3, 5, 7, 11, 13, 17, and 19.  
 
 

ℎ0 = 0𝑥𝑥6𝐻𝐻09𝑒667 
ℎ1 = 0𝑥𝑥𝑏𝑏𝑏𝑏67𝐻𝐻𝑒85 
ℎ2 = 0𝑥𝑥3𝑐6𝑒𝑓372 
ℎ3 = 0𝑥𝑥𝐻𝐻54𝑓𝑓53𝐻𝐻 
ℎ4 = 0𝑥𝑥510𝑒527𝑓 
ℎ5 = 0𝑥𝑥9𝑏𝑏05688𝑐 
ℎ6 = 0𝑥𝑥1𝑓83𝑚𝑚9𝐻𝐻𝑏𝑏 
ℎ7 = 0𝑥𝑥5𝑏𝑏𝑒0𝑐𝑚𝑚19 

• Phase Three: Initializing round constants (k)  
A number of constants are created in the same manner as in phase two. Each value (0–
63) is made up of the initial 32 bits of the fractional portions of the cube roots of the 
first 64 prime integers (2–311). 
 

• Phase Four: Chunk Loop 
Every 512-bit "chunk" of data will subsequently be transmitted through the input as we 
proceed.  

• Phase Five: Compression function  
The SHA-256 compression technique consists of 64 rounds. The hash buffers (a, b, c, d, e, 
f, g, and h) are the input of each round. These buffers are computed to supply hash 
buffers with fresh values for the input's next round. As seen in Figure 1, the value 𝑤𝑤𝑖𝑖 of 
32-bit is supplied for each round. It is obtained from a block of 512-bit using a message 
schedule.  
Moreover, an extra constant 𝐾𝐾𝑖𝑖 is required for each round. Its constant value, which 
ranges from 1 to 64, is determined by the round number. To construct 𝐻𝐻𝑖𝑖, the result of 
the most recent round is added to the hash input of the previous round. 

• Phase Six: Output Digest 
The 256-bit message digest is the result of the last 512-bit block.  
In Figure 2, the SHA-256 algorithm is demonstrated. 
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Figure 2. SHA-256 algorithm 

 

3. Digital Signatures 

A mathematical strategy called a digital signature can be applied to guarantee the reliability 
and authenticity of a digital document, software, or transmission [24]. Although it is a digital 
equivalent of a printed document or embossed sign, it provides a lot more intrinsic security. 
It also attempts to tackle the problem of impersonation and hacking in online conversations. 
It can offer proof of the author, status, and ownership of emails, documents or transactions 
[25]. They can also be used by signers to verify that they gave their informed permission. In 
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many countries, including the US, they have the same legal force and effect as conventional 
handwritten printed signatures. Signing technology, like an email software, provides a single 
direction hash of the online data to be veri�ied in order to create a digital signature [26]. It is 
impossible for the signer to say they never signed anything cause the document and the 
signer are uniquely identi�ied and linked by the digital signature. We call this attribute non-
repudiation. Digital signatures are widely used to sign smart contracts [27]. 

 
 
 

 
Figure 3. A model of digital signature. 

 
Figure 4. Smart contract process. 

Public key cryptography, sometimes referred to as asymmetric cryptography, is the 
backbone of digital signatures. A methodology of public key, such as Rivest-Shamir-Adleman 
(RSA), is used to preserve two keys, one secret and the other public, resulting in a pair of 
mathematically related keys. Several digital signature algorithms have been developed based on 
this concept. However, because of their �laws, only a few of these algorithms were appropriate 
for application in smart contracts, which included lengthy processing times and insuf�icient 
security [20].  

The following procedures are the most widely used and appropriate ones for digital 
signatures used in smart contracts:  

3.1  Schnorr digital signature algorithm 
Claus Schnorr has provided a description of this algorithm [28]. It is well known for being 
straightforward and is among the �irst digital signature techniques with security established on 
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the obstinacy of particular discrete logarithm issues [29]. It works well and generates signatures 
that are succinct. In Figure 5, the algorithm is displayed. 

A) Choosing parameters 

• Within the prime order 𝑞𝑞 group 𝐺𝐺 with generator 𝑔𝑔, all participants in the signature 
method concur, the discrete log issue is assumed to be hard. Usually, a group of Schnorr is 
implemented. 

• All individuals accept the encoded hash function 𝐻𝐻: {0,1}∗ → ℤ𝑞𝑞 .  

B) Key generation 

• 𝑢𝑢, the signing key, which is secret, is picked from ℤ𝑞𝑞 . 

• 𝑡𝑡 = 𝑔𝑔𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑞𝑞 is the public key for veri�ication. 
C) Signing 

For the purpose of making a sign, 𝑀𝑀: 

• A random selection is made from the allowed range for 𝑙𝑙. 

• Suppose  

                                                                                𝒘𝒘 = 𝒈𝒈𝒍𝒍   (1) 

• Consider   

                                                                        𝒛𝒛 = 𝑯𝑯(𝒘𝒘||𝑴𝑴)   (2) 

wherein the bit string representation of the concatenation symbol, ||, is illustrated. 
 

• Consider 

                                                                             𝒔𝒔 = 𝒍𝒍 − 𝒖𝒖𝒛𝒛   (3) 

• The pair of the signature is (𝑠𝑠, 𝑧𝑧). 

• Consider that 𝑠𝑠, 𝑧𝑧 ∈ ℤ𝑞𝑞; if 𝑞𝑞 < 2160, then 40 bytes can hold the signature representation. 

D) Verifying 

• Suppose  

                                                                             𝒘𝒘𝒗𝒗 = 𝒈𝒈𝒔𝒔𝒕𝒕𝒛𝒛      (4)       

• Suppose  

                                                                         𝒛𝒛𝒗𝒗 = 𝑯𝑯(𝒘𝒘𝒗𝒗||𝑴𝑴)    (5)
   
    

• The signature is authenticated if 𝑧𝑧𝑣𝑣 = 𝑧𝑧 . 
E) Correctness Proof  

• It is quite easy to demonstrate that the signed and con�irmed messages are the same if 
𝑧𝑧𝑣𝑣 = 𝑧𝑧 

                                                         𝒘𝒘𝒗𝒗 = 𝒈𝒈𝒔𝒔𝒕𝒕𝒛𝒛 = 𝒈𝒈𝒍𝒍−𝒖𝒖𝒛𝒛𝒈𝒈𝒖𝒖𝒛𝒛 = 𝒈𝒈𝒍𝒍 = 𝒘𝒘         (6) 
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and therefore                                 𝒛𝒛𝒗𝒗 = 𝑯𝑯(𝒘𝒘𝒗𝒗||𝑴𝑴) = 𝑯𝑯(𝒘𝒘||𝑴𝑴) = 𝒛𝒛       (7)
     

• 𝐺𝐺,𝑔𝑔, 𝑞𝑞, 𝑡𝑡, 𝑠𝑠, 𝑧𝑧,𝑤𝑤 are the public elements. 

• 𝑙𝑙,𝑢𝑢 are the private elements. 

• All this indicates that a properly signed message will pass veri�ication; a safe signing 
mechanism needs to include a lot more features. 

 
Figure 5. Schnorr signature algorithm. 

3.2 Elgamal Signature Algorithm 
El Gamal signature algorithm has been suggested depending on the discrete logarithm 
computing complexity [30]. It was �irst designed in 1985 by Taher Elgamal. Figure 5 [31] 
displays the algorithm. 

A) Key generation 

The process of creating keys has two parts. The �irst stage is to choose algorithm components 
that other system users can share, and the second is to estimate a single key pair for a particular 
user. 

B) Parameter generation 

• A length of key 𝑁𝑁 is stated. 
• 𝑝𝑝 is selected as an 𝑁𝑁 -bit prime number. 
• The outcome length of an encoded hash function, H, is set to L bits. If L > N, just the 

leftmost N bits are used in the hash outcome. 
• A generator of  𝑔𝑔 < 𝑝𝑝 the multiplicative group of integers modulo  𝑝𝑝, ℤ∗𝑝𝑝 is chosen. 
• The components of the algorithm are (𝑝𝑝,𝑔𝑔) .Members of the system may have these 

components in common. 

 

C) Per-user keys 

The next phase uses an assortment of elements to compute the key pair for a particular user: 

• A random integer 𝑢𝑢 is selected from {1, . . . . . . ,𝑝𝑝 − 2} 

https://en.wikipedia.org/wiki/Generating_set_of_a_group
https://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n
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• Determine  

                                                                                𝒕𝒕 = 𝒈𝒈𝒖𝒖𝐦𝐦𝐦𝐦𝐦𝐦𝒑𝒑  (8)
  
   

• 𝑢𝑢 is the hidden key and 𝑡𝑡 is the shared key. 

D) Signing 

The following procedure generates a sign for a message 𝑚𝑚: 

• An unpredictability integer, 𝑙𝑙, is selected from {2, ......, p-2}, where l is almost prime to p-
1. 

• Determine 

                                                                                𝒘𝒘 = 𝒈𝒈𝒍𝒍𝐦𝐦𝐦𝐦𝐦𝐦𝒑𝒑      (9) 

• Estimate  

                                                               𝒔𝒔 = (𝑯𝑯(𝒎𝒎) − 𝒖𝒖𝒘𝒘)𝒍𝒍−𝟏𝟏𝐦𝐦𝐦𝐦𝐦𝐦(𝒑𝒑− 𝟏𝟏)                (10) 

•  You have to start a new with a new random 𝑙𝑙 in the rare case if s=0. 
• The signature will be (𝑤𝑤, 𝑠𝑠) . 

E) Verifying a signature 

To ascertain whether a signature for a message 𝑚𝑚 is authentic, take the subsequent actions: 

 
• Ensure that 0 < 𝑤𝑤 < 𝑝𝑝 and 0 < 𝑠𝑠 < 𝑝𝑝 − 1. 
• The authenticity of the signature is contingent upon 
•  

                                                                          𝒈𝒈𝑯𝑯(𝒎𝒎) ≡ 𝒕𝒕𝒘𝒘𝒘𝒘𝒔𝒔𝐦𝐦𝐦𝐦𝐦𝐦𝒑𝒑     (11) 

F) Correctness 

• The algorithm is accurate since a signature made with the signing mechanism will 
always be recognized by the veri�ier. 

• The estimation of s during the generation of a signature conveys. 

                                                     𝑯𝑯(𝒎𝒎) ≡ 𝒖𝒖𝒘𝒘 + 𝒔𝒔𝒍𝒍𝐦𝐦𝐦𝐦𝐦𝐦(𝒑𝒑 − 𝟏𝟏)               (12) 

Taking into account that 𝑔𝑔 is signi�icantly prime to  , 

                                             𝑔𝑔𝐻(𝑚) ≡ 𝑔𝑔𝑢𝑢𝑤+𝑠𝑙(mod𝑝𝑝)              (13) 

                                     ≡ (𝑔𝑔𝑢𝑢)𝑤(𝑔𝑔𝑙)𝑠(mod𝑝𝑝)                (14) 

  

3.3 Elliptic Curve Signature Algorithm. 
Elliptic-curve cryptography is implemented by the Elliptic Curve Digital Signature algorithm 
(ECDSA), which provides a replacement to the Digital Signature algorithm (DSA) [32]. 
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It's crucial to comprehend the fundamentals of the Elliptic Curve in order to comprehend 
Elliptic Curve signatures more fully [33]. A planar algebraic curve that is stated by the following 
equation is called an elliptic curve. 

                                                                         
𝒚𝟐𝟐 = 𝒙𝟑 + 𝒂𝒂𝒙 + 𝒃𝒃  (15) 

An elliptic curve generally has the appearance depicted in Figure 6. When a straight line is 
drawn to cross an elliptic curve, it can intersect nearly three spots. It is evident that the elliptic 
curve is identical about the x-axis. This feature is necessary for the technique. 

 
                                                       ≡ (𝑡𝑡)𝑤(𝑤𝑤)𝑠(mod𝑝𝑝)  (16) 

 

Figure 6. Elgamal signature algorithm. 

 
For the purpose of simplicity and practical procedure implementation, we will only 

consider four parameters: two private values, a and b; one prime, P; and G (a primitive root of 
P). P and G are integers that are known to the public. People (let's say Alice and Bob) choose 
hidden values a and b, create a key, and transfer it in public (let's say 𝑥𝑥 = 𝐺𝐺𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) and (let's 
say 𝑦𝑦 = 𝐺𝐺𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝), respectively. People are aware of the integers  𝑃𝑃 and  𝐺𝐺. 

 
After receiving the key and using it to build a secret key, the other person can encrypt 

(𝑘𝑘𝑎𝑎 = 𝑦𝑦𝑎𝑎mod𝑃𝑃) and (𝑘𝑘𝑏𝑏 = 𝑦𝑦𝑏𝑏mod𝑃𝑃) with the exact same secret key. 
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A) Key generation 

• A public key curve point, 𝑄𝑄𝑄𝑄 = 𝑚𝑚𝑄𝑄 × 𝐺𝐺, which is the elliptic curve's base point, and a 
place on the curve that provides a large prime order 𝑛𝑛 portion, 𝑛𝑛 × 𝐺𝐺 = 𝑂𝑂, where 𝑂𝑂 is 
the identity component, make up the key combination that Alice creates. A random 
selection is made for the hidden key integer  𝑚𝑚𝑄𝑄 within the interval [1,𝑛𝑛 −  1]. A scalar 
multiplier of  × is used for multiplying points on an elliptic curve. 
 

 

 
Figure 7. Elliptic curve points. 

B) Signing 
• Here 𝑧𝑧 = 𝐻𝐻𝐻𝐻𝑠𝑠ℎ(𝑚𝑚), 𝑚𝑚 is the message that needs to be signed, and HASH is an encoded 

hash function—similar to SHA-2—with an outcome that is converted to an integer. 
• Let E represent the 𝐿𝐿𝑛𝑛leftmost bits of 𝑧𝑧, where 𝐿𝐿𝑛𝑛 denotes the group order 𝑛𝑛 's bit length. 

Remember that 𝐸𝐸 cannot be longer than 𝑛𝑛, although it can be greater. 
• A cryptographically secure random number, 𝑙𝑙, is selected from [1,𝑛𝑛 − 1] . 
• Determine the approximate location of the curve. 

 

                                                                   (𝒂𝒂𝟏𝟏,𝒃𝒃𝟏𝟏) = 𝒍𝒍 × 𝑮𝑮                                       (17) 

• Estimate 
                                                          𝑤𝑤 = 𝐻𝐻1mod 𝑛𝑛           (18) 

•  Refer back to step 3 if  𝑤𝑤 = 0. 
•  
• Determine  

                                                  𝑠𝑠 = 𝑙𝑙−1(𝐸𝐸 + 𝑤𝑤𝑚𝑚𝐴𝐴)mod 𝑛𝑛           (19) 
•  If 𝑠𝑠 = 0, return to step 3. 
• The signature item is (𝑧𝑧, 𝑠𝑠). Thus, (𝑤𝑤,−𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛) is a trustworthy signature. 

C) Veri�ication 

• Con�irm that the values of 𝑤𝑤 and 𝑠𝑠 in [1,𝑛𝑛 − 1] are integers. The signature is null and 
void otherwise. 

 



12th International Conference on Mathematics and Engineering Physics
Journal of Physics: Conference Series 2847 (2024) 012002

IOP Publishing
doi:10.1088/1742-6596/2847/1/012002

12

• Determine 
                                                        𝑧𝑧 = 𝐻𝐻𝐻𝐻𝑠𝑠ℎ(𝑚𝑚),                (20) 

• where the signature-generating technique is the same as HASH. 
•  
• Assume that E be the 𝐿𝐿𝑛𝑛 leftmost bits of z . 
• Determine 

                                                  𝑡𝑡1 = 𝐸𝐸𝑠𝑠−1mod 𝑛𝑛    (21) 
• And 

                                                  𝑡𝑡2 = 𝑤𝑤𝑠𝑠−1mod 𝑛𝑛                (22) 
• Determine the approximate location of the curve. 
•  

                                       (𝐻𝐻1, 𝑏𝑏1) = 𝑡𝑡1 × 𝐺𝐺 + 𝑡𝑡2 × 𝑄𝑄𝐴𝐴                (23) 
• If  (𝐻𝐻1,𝑏𝑏1) = 𝑂𝑂 then the signature is invalid. 
• If 𝑤𝑤 ≡ 𝐻𝐻1mod 𝑛𝑛 The signature is considered credible; if not, it is invalid. 

D) Correctness 

                                                                𝒕𝒕𝟏𝟏 = 𝒔𝒔𝒛𝒛−𝟏𝟏𝐦𝐦𝐦𝐦𝐦𝐦 𝒏𝒏                 (24) 

                                                             𝒕𝒕𝟐𝟐 = −𝒘𝒘𝒛𝒛−𝟏𝟏𝐦𝐦𝐦𝐦𝐦𝐦 𝒏𝒏                    (25) 

                                                               𝒀𝒀 = 𝒕𝒕𝟏𝟏𝑷𝑷 + 𝒕𝒕𝟐𝟐𝑸𝑸   (26) 

                                                               𝒀𝒀 = 𝒂𝒂 𝐦𝐦𝐦𝐦𝐦𝐦 𝒏𝒏                 (27) 

                                                            ∵ 𝑸𝑸𝑨𝑨 = 𝒅𝒅𝑨𝑨 × 𝑮𝑮                 (28) 

                                                      ∴ 𝑽𝑽 = 𝒕𝒕𝟏𝟏 × 𝑮𝑮 + 𝒕𝒕𝟐𝟐𝒅𝒅𝑨𝑨 × 𝑮𝑮                                                                           (29)  

                                                         𝑽𝑽 = (𝒕𝒕𝟏𝟏 + 𝒕𝒕𝟐𝟐𝒅𝒅𝑨𝑨) × 𝑮𝑮      (30) 

                                                           𝑽𝑽 = (𝑬𝑬𝒔𝒔−𝟏𝟏 +𝒘𝒘𝒅𝒅𝑨𝑨𝒔𝒔−𝟏𝟏) × 𝑮𝑮 (31) 

                                                      𝑽𝑽 = (𝑬𝑬 + 𝒘𝒘𝒅𝒅𝑨𝑨)𝒔𝒔−𝟏𝟏 × 𝑮𝑮                  (32) 

                                       𝑽𝑽 = (𝑬𝑬 + 𝒘𝒘𝒅𝒅𝑨𝑨)(𝑬𝑬+ 𝒘𝒘𝒅𝒅𝑨𝑨)−𝟏𝟏(𝒍𝒍−𝟏𝟏)−𝟏𝟏 × 𝑮𝑮  (33) 

                                                                 𝑽𝑽 = 𝒍𝒍 × 𝑮𝑮                     (34) 

This is a validation of the last phase in accordance with the 𝑤𝑤 idea. In Figure 8, the 
algorithm is displayed. 
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Figure 8. Elliptic curve strategy. 

Conclusion 

Mathematics plays a great role in smart contracts. Cryptographic technologies like digital 
signatures and hash functions may be employed to represent it. These techniques are used to 
ensure security, immutability, and enforceability of these contracts. Hash functions are used to 
secure the blockchain where smart contracts are stored while digital signatures are used to sign 
the contract. In this study, SHA-256 is explained as a version of hash algorithms that is mostly 
used in smart contract. Also, the most familiar digital signature schemes used in these contracts 
are presented. These schemes include Schnorr scheme, Elgamal scheme and Elliptic curve 
scheme. Future work may involve some modi�ications to secure hash algorithms and digital 
signature schemes to enhance the performance of them and increase their security in smart 
contracts.   
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