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Abstract. A method for coupling and decoupling, utilizing finite difference, is developed to 

solve the biharmonic problem on a unit square. This problem is reformulated as a coupled 

system involving two second-order partial differential equations. This approach necessitates 

solving the original problem through a sequence of boundary value problems for the Poisson 

equation. It achieves this using a minimal number of mesh points, distinguishing itself from 

the traditional methods employed in prior research to address this particular issue. A compact 

finite difference scheme has been introduced for the solution of fourth and sixth-order Poisson 

equations. This innovative approach effectively reduces the computational cost of the 

proposed algorithm, especially when dealing with large grid numbers, compared to traditional 

methods. Simultaneously solving these Poisson equations can be easily programmed. We plan 

to apply this method to analyze the fourth-order differential problem of a square clamped 

plate subjected to various loads. The biharmonic problem has been examined with a focus on 

achieving higher-order accuracy. The outcomes of numerical experiments showcase the 

method's optimal global accuracy and reveal super convergence results. Notably, a sixth-order 

accuracy is observed at both the boundary nodes and interior points. 

1. Introduction 

The fourth-order differential equation holds significant importance in physics, particularly in 

the realms of fluid and solid mechanics. It has garnered considerable attention from scientists 

in the fields of engineering, mathematics, and computing sciences over the past few decades. 

Numerous iterative and non-iterative methods have been devised and implemented to address 

this problem, particularly when considering Dirichlet and/or Dirichlet and Neumann boundary 

conditions. 

 Various approaches exist, with some tackling the problem directly and solving the 

fourth-order equation in its original form. Here we choose a strategy involving the 

decomposition of the problem into two coupled Poisson equations. This approach leverages 

the simplicity and existing code for dealing with second-order equations, offering an 
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alternative perspective in addressing the challenges posed by the fourth-order differential 

equation. This is the beginning of this approach of this special interpretation of decoupling 

and coupling [1]. 

 Several numerical techniques have been explored for solving the biharmonic problem. 

Noteworthy among these are works based on the finite difference method, as published in [2], 

and a fast Poisson solver also rooted in the finite difference method (FDM) [3], [4].  Finite 

Line Method (FLM) is introduced as a solution technique for addressing both general linear 

and non-linear high-order partial differential equations [5]. These approaches typically entail 

higher-order differential approximations and involve a specific number of points in the mesh 

grid. 

 In the realm of finite element methods (FEM), there is the hp-version discontinuous 

Galerkin formulation [6], as well as a mixed finite volume method [7]. Lin et al. recently 

proposed an effective implementation of the weak Galerkin finite element methods for the 

biharmonic equation [8]. For more comprehensive details on FEM for solving the biharmonic 

equation, interested readers are directed to references in [9][10][11][12], as well as the 

citations therein. 

 Other methodologies include the Homotopy Analysis Method [13][14], the Fast 

Multipole Method [15], the Fast Fourier-Galerkin Method [16], and a multigrid technique 

proposed in [17]. These diverse methods contribute to the array of approaches available for 

approximating solutions to biharmonic problems. 

 The conventional finite difference method applied to biharmonic problems typically 

necessitates a substantial number of mesh points, especially when addressing higher-order 

differential equations (e.g., 13 points for solving the biharmonic equation) [18][19]. A 

strategy to mitigate this demand involves decomposing higher-order differential equations 

into several second-order differential equations. While solving these second-order equations 

simultaneously can be programmatically concise, it comes at the cost of increased computer 

time and memory requirements. 

 In this paper, we aim to develop a classical method for solving higher partial 

differential equations with varying degrees of accuracy through the application of a coupling 

technique. The core concept of this method involves breaking down the biharmonic equation 

into two decoupled Poisson equations, for which numerous efficient algorithms are available. 

Compact finite difference schemes are then employed to handle fourth and sixth-order 

accuracy for the biharmonic equation. 

 While the convergence of the mesh regrating process is theoretically established at the 

continuous level using operator equation theory, there exists a gap in the literature regarding 

numerical experiments to validate the method's effectiveness. Therefore, in this concise paper, 

we present the results of several numerical experiments with different levels of accuracy. This 

verification of convergence is crucial in confirming the method's reliability. The insights 

gained from these experiments not only contribute to the development of a fast and efficient 

algorithm for the biharmonic equation but also hold promise for tackling various higher 

partial differential equations through coupling and decoupling schemes. 

 The paper is structured as follows: In Section 2, we provide a concise introduction to 

the design of the coupling and decoupling scheme, outlining the application of compact finite 

difference for solving the biharmonic equation with higher-order accuracy. Section 3 is 

dedicated to presenting numerical results for biharmonic problems, serving as an application 

of plate theory with second, fourth, and sixth-order accuracy, respectively. At the end, we 

draw conclusions based on our findings. 

 

2. A Coupling and Decoupling Method for Biharmonic Equation 
In this section, for the sake of simplicity, we will focus on a reduced system of equations 

representing the fourth-order partial differential equation, specifically the biharmonic 
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equation. It is important to note that our results and methodologies can be extended to more 

complex and general systems of equations 

Consider, for 𝑤(𝑥, 𝑦)[20]: 

∆2𝑤 = 𝑓(𝑥, 𝑦) 𝑖𝑛 𝛺,    𝑤 = 0 𝑎𝑛𝑑 
𝜕𝑤

𝜕𝑛
= 0 𝑜𝑛 𝛤, 

 

(1) 

Posed on the unit square Ω = (0.1) × (0.1) with specified boundary conditions. The notation 
∂w

∂n
 refers to the normal derivative on the boundary of the unit square, where n is a unit vector 

orthogonal to the surface, 

∂w

∂n
=

{
 

 
∂w

∂x
= 0,   0 ≤ 𝑥 ≤ 1

∂w

∂y
= 0,   0 ≤ 𝑦 ≤ 1

 

 

(2) 

Recall that, 

∆2𝑤 =
∂4𝑤

∂x4
+ 2

∂4𝑤

∂x2𝜕𝑦2
+
∂4𝑤

∂y4
= 𝑓(𝑥, 𝑦) 

(3) 

Previously, the biharmonic equation was addressed using the classical 13-point central 

difference formula [19]. In the current paper, our focus is on developing a classical method 

for solving high-order partial differential equations through the application of coupling and 

decoupling techniques. This novel method simplifies the fourth-order problem by breaking it 

down into two second-order problems, facilitating a more straightforward implementation. 

Now the equation Eq (1) can be replaced by 

∆𝑤 ≡ 𝑤𝑥𝑥 +𝑤𝑦𝑦 = 𝑣, 

∆𝑣 ≡ 𝑣𝑥𝑥 + 𝑣𝑦𝑦 = 𝑓(𝑥, 𝑦) 

    (4) 

Considering the given boundary conditions Eq (2), our approach involves solving the finite 

difference analog of the coupled system represented by Eq (4) and Eq (2). 

Superimpose a square grid over the unit square with size ℎ =
1

𝑁
+ 1 for some positive integer 

𝑁. let Ω be those gride points (𝑥, 𝑦) = (𝑖ℎ, 𝑗ℎ) for 1 ≤ 𝑖, 𝑗 ≤ 𝑁 (i.e., the interior points), and 

let Γ be those boundary points. Let 𝑢 be a function where 𝑤(𝑥, 𝑦) ≡ 𝑤𝑖𝑗. 

A standard explicit finite difference scheme is employed to approximate the Poisson equation, 

utilizing a centered scheme as defined in Eq (5). It's noteworthy that the local truncation error 

of this approximation is of the order 𝑂(ℎ2) [21]. 

∆𝑤 =
𝑤𝑖+1,𝑗 +𝑤𝑖−1,𝑗 +𝑤𝑖,𝑗+1 +𝑤𝑖,𝑗−1 − 4𝑤𝑖,𝑗

ℎ2
 

(5) 

Enhanced approximations can be achieved by elevating the order of the truncation error in the 

finite difference scheme. This improvement is typically achieved by incorporating more 

points in the stencil of the numerical schemes, as demonstrated in Eq (6) and Eq (7). Notably, 

these schemes exhibit a local truncation error of 𝑜(ℎ4) and 𝑜(ℎ6), respectively [22][23]. 
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∆𝑤 =
−𝑤𝑖+2,𝑗+16𝑤𝑖+1,𝑗+16𝑤𝑖−1,𝑗−𝑤𝑖−2,𝑗− 𝑤𝑖,𝑗+2+16𝑤𝑖,𝑗+1+16𝑤𝑖,𝑗−1−𝑤𝑖,𝑗−2−60𝑤𝑖,𝑗

12ℎ2
  (6) 

∆𝑤 =
2𝑤𝑖+3,𝑗−27𝑤𝑖+2,𝑗+270𝑤𝑖+1,𝑗+270𝑤𝑖−1,𝑗−27𝑤𝑖−2,𝑗+2𝑤𝑖−3,𝑗+2𝑤𝑖,𝑗+3−27𝑤𝑖,𝑗+2+270𝑤𝑖,𝑗+1+270𝑤𝑖,𝑗−1−27𝑤𝑖,𝑗−2+2𝑤𝑖,𝑗−3−980𝑤𝑖,𝑗

60ℎ2
  

 

(7) 

One drawback of this approach is the necessity to introduce additional equations for grid 

points, especially those in close proximity to and directly at the boundaries. 

 

Compact finite difference (C.F.D) schemes offer the advantage of achieving higher-order 

accuracy with fewer cell points. These implicit methods, however, often involve matrix 

inversion when applied to solving partial differential equations. Specifically, second 

derivative compact finite difference schemes are employed for achieving fourth-order 

accuracy. 

1

10
𝑤𝑖−1
,, +𝑤𝑖

′′ +
1

10
𝑤𝑖+1
′′ =

6

5

𝑤𝑖+1 − 2𝑤𝑖 +𝑤𝑖−1
ℎ2

 

The proof for the second derivative compact finite difference (C.F.D) formula mentioned 

earlier can be found in [24]. Additionally, a rapid implementation of a fourth-order compact 

finite difference scheme for the Poisson equation in two dimensions is presented. 

𝑤𝑖+1,𝑗
𝑥𝑥 + 10𝑤𝑖,𝑗

𝑥𝑥 +𝑤𝑖−1,𝑗
𝑥𝑥 =

12

ℎ𝑥
2 (𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗)  

𝑤𝑖+1,𝑗
𝑦𝑦

+ 10𝑤𝑖,𝑗
𝑦𝑦
+𝑤𝑖−1,𝑗

𝑦𝑦
=
12

ℎ𝑦
2 (𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗)  

By means of Kronecker product (or tensor product) ⨂, one can reformulate above equations 

into the following matrix form 

𝐴𝑥⊗ 𝐼  𝑊𝑥𝑥 =
12

ℎ𝑥
2 𝐵𝑥⊗ 𝐼  𝑊 

𝐴1  𝑊
𝑥𝑥 =

12

ℎ𝑥
2 𝐵1 𝑊 

𝑊𝑥𝑥 =
12

ℎ𝑥
2  𝐴1

−1 𝐵1 𝑊 

𝐴𝑦⊗ 𝐼  𝑊𝑦𝑦 =
12

ℎ𝑦
2 𝐵𝑦⊗ 𝐼  𝑊 

𝐴2  𝑊
𝑦𝑦 =

12

ℎ𝑦
2 𝐵2 𝑊 

𝑊𝑦𝑦 =
12

ℎ𝑦
2  𝐴2

−1 𝐵2 𝑊 

Where 𝐴𝑥 , 𝐴𝑦 and𝐵𝑥 , 𝐵𝑦 taking the general form 
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𝐴𝑥 =

(

  
 

10 1 0 ⋯ 0 0
1 10 1 ⋯ 0 0
0 1 10 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 10 1
0 0 0 ⋯ 1 10)

  
 
,   𝐵𝑥 =

(

  
 

−2 1 0 ⋯ 0 0
1 −2 1 ⋯ 0 0
0 1 −2 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ −2 1
0 0 0 ⋯ 1 −2)

  
 

 

∵  ∆ 𝑤 = 𝑊𝑥𝑥 +𝑊𝑦𝑦 = 𝐹 

(
12

ℎ𝑥
2  𝐴1

−1 𝐵1 +
12

ℎ𝑦
2  𝐴2

−1 𝐵2)𝑊 = 𝐹 

If ℎ𝑥 = ℎ𝑦 = ℎ, 

12

ℎ2
 (𝐴1

−1 𝐵1 +  𝐴2
−1 𝐵2) 𝑊 = 𝐹 

𝑊 =
ℎ2

12
 𝐶−1 𝐹 

Where,  

𝐶 = 𝐴1
−1 𝐵1 +  𝐴2

−1 𝐵2 

Similarly, the implementation of a six-order compact finite difference scheme for the Poisson 

equation in two dimensions is carried out in matrix form, as detailed in [25]. 

𝑊𝑥𝑥 +𝑊𝑦𝑦 = (
3

4ℎ2
𝐴1
−1𝐵1 +

3

4ℎ2
𝐴2
−1𝐵2)𝑊 

𝑊 =
4ℎ2

3
 𝐶−1 𝐹 

Where,  

𝐶 = 𝐴1
−1 𝐵1 +  𝐴2

−1 𝐵2 

Where 𝐴1, 𝐴2 and 𝐵1, 𝐵2 taking the general form of �̃� and �̃� respectively: 

�̃� =

(

 
 
 
 

11 2 0 . . 0 0
2 12 2 . . 0 0
0 2 12 . . 0 0
: : : . . : :
: : : . . : :
0 0 0 . . 12 1
0 0 0 . . 1 12)

 
 
 
 

 , 
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�̃� =

(

 
 
 
 
 
 

−34 16 1 0 0 . . 0 0 0
16 −34 16 1 0 . . 0 0 0
1 16 −34 16 1 . . 0 0 0
: : : : : . . : : :
: : : : : . . : : :
: : : ; : . . : : :
: : : : 1 16 −34 16 1
0 0 0 . . 0 1 16 −34 16
0 0 0 . . 0 0 1 16 −34)

 
 
 
 
 
 

 

 

We now propose to implement the decoupling method and utilize finite-difference techniques 

to obtain the matrix representation of the coupled system given by Eq (4). 

A𝑊 = 𝑉 

A𝑉 = 𝐹 
(8) 

Combining the two expressions from Eq (8) results in a unified global matrix equation: 

A(A𝑊) = A2𝑊 = 𝐹 (9) 

Where, Matrix A for accuracy 𝑂(ℎ2),       

A =

(

 
 
 
 
 
 

−4 1 0 1 0 0 0 0 0

1 −4 1 0 1 0 0 0 0

0 1 −4 0 0 1 0 0 0

1 0 0 −4 1 0 1 0 0

0 1 0 1 −4 1 0 1 0

0 0 1 0 1 −4 0 0 1

0 0 0 1 0 0 −4 1 0

0 0 0 0 1 0 1 −4 1

0 0 0 0 0 1 0 1 −4)

 
 
 
 
 
 

 

 

Matrix A for fourth order compact finite difference 𝑂(ℎ4), 

A =

(

 
 
 
 
 

−0.4492 0.1237 −0.0125 . . . . . . 0
0.1237 −0.4492 0.1237 . . . . : :
−0.0125 0.1237 −0.4492 . . . . : :

: : : . . : : :
: : : . . : : :
: : : . . −0.4492 0.1237 −0.0125
: . . . . . . 0.1237 −0.4492 0.1237
0 . . . . . . −0.0125 0.1237 −0.4492)

 
 
 
 
 

 

Subsequently, it is necessary to apply the boundary conditions to matrix 𝐴2 based on the 

appropriate accuracy level of the matrix. The prescribed boundary conditions for 𝑂(ℎ2) 

accuracy are as follows: 
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At the boundary, we will deal the Neumann boundary condition, necessitating the inclusion of 

an additional row of unknowns outside the region (ghost points) [26]. For the Poisson 

equation with Neumann boundary conditions: 

∆𝑤 = 𝑓(𝑥, 𝑦)  𝑖𝑛 Ω,    
∂w

∂n
= 𝑔 𝑜𝑛 Γ, 

A natural approximation to the normal derivative involves employing a central difference 

scheme: 

𝜕𝑤

𝜕𝑛
(𝑥1, 𝑦𝑗) =

𝑤0,𝑗 −𝑤2,𝑗

2ℎ
+ 𝑜(ℎ2) 

To handle Neumann boundary conditions with increased accuracy, we introduce ghost points 

positioned outside of the domain and adjacent to the boundary. 

∂w

∂n
=

{
 
 
 

 
 
 
𝑤0,𝑗 −𝑤1,𝑗

2ℎ
,         𝑗 = 1,2… ,𝑁

𝑤𝑁+1,𝑗 −𝑤𝑁,𝑗

2ℎ
,   𝑗 = 1,2… ,𝑁

𝑤𝑖,0 −𝑤𝑖,1
2ℎ

,        𝑖 = 1,2… ,𝑁

𝑤𝑖,𝑁+1 −𝑤𝑖,𝑁
2ℎ

,    𝑖 = 1,2… ,𝑁

 

 

 

(10) 

 

Figure 1. Ghost points for Neumann boundary conditions 
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The value 𝑤0,𝑗 is not well defined. We need to eliminate it from the equation. This is possible 

since on the boundary point (𝑥1, 𝑦𝑗), we have two equations; 

−4𝑤1,𝑗 +𝑤2,𝑗 +𝑤0,𝑗 +𝑤1,𝑗+1 +𝑤1,𝑗−1 = ℎ
2𝑓1,𝑗 (11) 

𝑤0,𝑗 −𝑤2,𝑗 = 2ℎ𝑔1,𝑗 (12) 

From Eq (12), we get 𝑤0,𝑗 = 2ℎ𝑔1,𝑗 +𝑤2,𝑗. Substituting it into Eq (11), we get an equation at 

point (𝑥1, 𝑦𝑗); 

−4𝑤1,𝑗 + 2𝑤2,𝑗 +𝑤1,𝑗+1 +𝑤1,𝑗−1 = ℎ
2𝑓1,𝑗 − 2ℎ𝑔1,𝑗 (13) 

The scaling is implemented to preserve the symmetry of the matrix. We can address other 

boundary points using the same technique, with the exception of the four corner points. 

At corner points, the normal vector is not well-defined. To approximate, we utilize the 

average of two directional derivatives. Using the example of (0,0), we have: 

−4𝑤1,1 +𝑤2,1 +𝑤0,1 +𝑤1,2 +𝑤1,0 = ℎ
2𝑓1,1, (14) 

𝑤0,1 −𝑤2,1 = 2ℎ𝑔1,1, (15) 

𝑤1,0 −𝑤1,2 = 2ℎ𝑔1,1, (16) 

So, we can solve 𝑤0,1and 𝑤1,0 from Eq (15) and Eq (16), and substitute them into Eq (14). 

This gives an equation for the corner point (𝑥1, 𝑦1), 

−4𝑤1,1 + 2𝑤2,1 + 2𝑤1,2 = ℎ
2𝑓1,1 −  2ℎ𝑔1,𝑗, (17) 

Similar techniques will be employed to handle other corner points. In the same manner, we 

apply the boundary conditions with higher-order accuracy to matrices. 

The entire numerical procedure can be summarized as follows: 

1. Given 𝑖, 𝑗, 𝑀,𝑁 and grid points (𝑥𝑖 , 𝑦𝑗), 𝑖 = 0,1,… ,𝑀, 𝑗 = 0,1,… ,𝑁, compute 𝐹 by 

evaluation of 𝑓(𝑥𝑖, 𝑦𝑗) h. 

2. Compute 𝐴 and 𝐴2 defined in Eq. (9). 

3. Apply the boundary conditions on  𝐴2. 

4. Perform the matrix inversion of 𝐴2 and get W. 

 

3. Numerical Realization of The Coupling Method 

We have developed a decoupling and coupling scheme for the biharmonic equation with 

second, fourth, and six-order accuracy, respectively. In this section, we will use the proposed 

numerical algorithm to compute the deflection of a clamped plate under various loads and 
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assess the convergence of the process. The examples below consider a computational domain 

represented by a rectangle covered with a uniform grid. All computations are performed on a 

laptop computer with an Intel(R) Core (TM) i7-5500U CPU, utilizing MATLAB. 

Example 4.1  

∆2𝑤 = 1 𝑖𝑛 Ω,    𝑤 = 0 𝑎𝑛𝑑 
∂w

∂n
= 0 𝑜𝑛 Γ, 

This problem corresponds to the bending of a square clamped plate under a uniform load [27]. 

Table 1 provides the computed values of the deflection at point (0.5, 0.5). It is worth noting 

that, in comparison, [27] reports values 𝑜𝑓 𝑤(0.5, 0.5) ≈ 0.001265. Our results, achieved 

with second-order accuracy, are evidently comparable to those reported in [27]. 

Table 1 Rate of convergence for bending of clamped plate under uniform load of the different accuracy  

 Step size Second order 𝒐(𝒉𝟐) Fourth order 𝒐(𝒉𝟒) Sixth order 𝒐(𝒉𝟔) 

0.12500 0.00048103      0.000675769 0.000893484 

0.06250 0.00075309 0.000919317 0.001121958 

0.04545 0.00095365 0.001020987 0.001203811 

0.03125 0.00105619 0.001124602 0.001244686 

0.01851 0.00115018 0.001190624 0.001265651 

0.01562 0.00118642 0.001232904 0.001265485 

0.00925 0.00121763 0.001249588 0.001265369 

0.00463 0.00124076 0.001254223 0.001265366 

 

Table 2 Comparison of error between the of different accuracy in case of Example 4.1 

Step 

size  

0.125 0.0625 0.045455 0.03125 0.018519 0.015625 0.009259 0.00463 

error         

2
nd

order  

 

4
th 

order 

 

6
th

order 

7.8397e-04 

 

5.0150e-04 

 

2.9689e-4 

 

5.1190e-04 

 

3.4568e-04 

 

1.4304e-4 

 

3.1134e-04 

 

2.4401e-04 

 

6.1189e-05 

 

2.0881e-04  

 

1.4040e-04 

 

2.0314e-05 

 

1.1481e-04 

 

7.4376e-05 

 

6.5149e-07 

 

7.8572e-05 

 

3.2096e-05 

 

4.85e-07 

 

4.7364e-05 

 

1.5412e-05 

 

3.6930e-07 

 

2.4234e-05 

 

1.0777e-05 

 

3.6622e-07 
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Figure 2. Comparison of solution of different accuracy Example 4.1 

 

 

 

Figure 3. Plots of ordinary error with different mesh sizes for different accuracy for Example 4.1. 
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Figure 4. Solution plot of the Example 4.1 for M = 217. 

Example 4.2  

∆2𝑤 = 𝑥   𝑖𝑛 Ω,    𝑤 = 0 𝑎𝑛𝑑 
∂w

∂n
= 0 𝑜𝑛 Γ, 

This particular problem represents the bending of a square clamped plate under a linear load 

[28]. The computed values of the deflection at point (0.5, 0.5) are presented in Table 3. In 

[28], corresponding values are reported as 𝑤(0.5, 0.5) ≈ 0.00063. Once again, we achieve 

results that are comparable to those reported in [28]. 

Table 3 Rate of convergence of the bending of clamped plate under linear load in different accuracy  

 Step size  Second order 𝒐(𝒉𝟐) Fourth order 𝒐(𝒉𝟒) Sixth order 𝒐(𝒉𝟔) 

0.12500 0.000240516 0.000276353 0.000294743 

0.06250 0.000436298 0.00044354 0.000479556 

0.04545 0.000476829 0.000510494 0.000549793 

0.03125 0.000518711 0.000552586 0.000593104 

0.01851 0.000554027 0.000572512 0.000624702 

0.01562 0.000585934 0.000593214 0.000631826 

0.00925 0.000600111 0.000603525 0.000631569 

0.00463 0.000616035 0.000608818 0.000631061 
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Table 4 Comparison of error between the of different accuracy in case of Example 4.2 

Step 

size  
0.125 0.0625 0.045455 0.03125 0.018519 0.015625 0.009259 0.00463 

Error          

2
nd

order  

 

4
th 

order 

 

6
th

order 

3.8948e-4 

 

3.5365e-4 

 

3.3526e-04 

 

1.9370e-04 

 

1.8646e-04 

 

1.5044e-04 

 

1.5317e-4 

 

1.1951e-04 

 

8.0207e-05 

 

1.1129e-4 

 

7.7414e-05 

 

3.6896e-05 

 

7.5973e-05 

 

5.7488e-05 

 

5.2978e-06 

 

4.4066e-05 

 

3.6786e-05 

 

1.8257e-06 

 

2.9889e-05 

 

2.6475e-05 

 

1.5686e-06 

 

1.3965e-05 

 

2.1182e-05 

 

1.0609e-06 

 

 

 
Figure 5. Comparison of solution of different accuracy Example 4.2 
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Figure 6. Plots of ordinary error with different mesh sizes for different accuracy for Example 4.2. 

 
Figure 7. Solution plot of the Example 4.2 for M = 217. 
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Example 4.3  

𝑤(𝑥, 𝑦) = 𝑥3(1 − 𝑥)3𝑦3(1 − 𝑦)3, 

 

This particular problem corresponds to the Chinosi problem, where a unit square plate is 

considered with uniform decomposition into triangular elements, and all edges are built-in 

[29]. The value of the deflection at point (0.5, 0.5) = 0.000244140625 under the specified 

load 

 

𝑓(𝑥, 𝑦) = −72(1 − 𝑥)2𝑦3(1 − 𝑦)3 + 216𝑥(1 − 𝑥)𝑦3(1 − 𝑦)3 − 72 𝑥2 𝑦3(1 − 𝑦)3

+ 72𝑥(1 − 𝑥)3𝑦(1 − 𝑦)3 − 216𝑥(1 − 𝑥)3𝑦2(1 − 𝑦)2

+ 72𝑥(1 − 𝑥)3𝑦3(1 − 𝑦) − 216𝑥2(1 − 𝑥)2𝑦(1 − 𝑦)3

+ 648𝑥2(1 − 𝑥)2𝑦2(1 − 𝑦)2 − 216𝑥2(1 − 𝑥)2𝑦3(1 − 𝑦)

+ 72𝑥3(1 − 𝑥)𝑦(1 − 𝑦)3 − 216𝑥3(1 − 𝑥)𝑦2(1 − 𝑦)2

+ 72𝑥3(1 − 𝑥)𝑦3(1 − 𝑦) − 72𝑥3(1 − 𝑥)3(1 − 𝑦)2

+ 216𝑥3(1 − 𝑥)3𝑦(1 − 𝑦) − 72𝑥3(1 − 𝑥)3𝑦2 

Table 5.  Rate of convergence of the chinosi problem with different accuracy 

 Step size  Second order 𝒐(𝒉𝟐) Fourth order 𝒐(𝒉𝟒) Sixth order 𝒐(𝒉𝟔) 

0.12500 0.000234713 0.000239398 0.000245918 

0.06250 0.000241364 0.000240088 0.000245111 

0.04545 0.000245525 0.000242006 0.000244728 

0.03125 0.000244924 0.000243499 0.000244531 

0.01851 0.000244635 0.000244815 0.000244418 

0.01562 0.000244596 0.000244436 0.000244253 

0.00925 0.000244479 0.00024443 0.000244215 

0.00463 0.000244386 0.000244311 0.000244144 

 

Table 6.  Comparison of error between the of different accuracy in case of Example 4.3 

Step 

size 
0.125 0.0625 0.045455 0.03125 0.018519 0.015625 0.009259 0.00463 

Error          

2
nd

order  

 

4
th 

order 

 

6
th

order 

9.43e-06 

 

4.7419e-06  

 

1.7777e-06 

 

2.78e-06 

 

4.0525e-06 

 

9.7076e-07 

 

1.38e-06 

 

2.1341e-06 

 

5.8786e-07 

 

7.84e-07 

 

6.4148e-07 

 

3.9078e-07 

 

 

4.95e-07 

 

6.7467e-07 

 

2.7777e-07 

 

 

4.56e-07 

 

2.9609e-07 

 

1.1308e-07 

 

3.39e-07 

 

2.8985e-07 

 

7.5352e-08 

 

2.46e-07 

 

1.7122e-07 

 

3.5586e-09 
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Figure 8. Comparison of solution of different accuracy Example 4.3 

 

 

 

 
Figure 9. Plots of ordinary error with different mesh sizes for different accuracy for Example 4.3. 
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Figure 10. Solution plot of the Example 4.3 for M = 217. 

 

Example 4.4  

𝑤(𝑥, 𝑦) = (1 − cos (𝜋𝑥))2(1 − cos(𝜋𝑦))2 

This problem models the bending of a square clamped plate under distributed load is 

described in the following form,  

𝑓(𝑥, 𝑦) = 8 𝜋 4 𝑐𝑜𝑠(𝜋𝑥)2(𝑐𝑜𝑠(𝜋𝑦)2 −  1) + 8 𝜋 4 𝑐𝑜𝑠(𝜋𝑦 )2(𝑐𝑜𝑠(𝜋𝑥)2 − 1)

− 8 𝜋 4𝑠𝑖𝑛(𝜋𝑥)2(𝑐𝑜𝑠(𝜋𝑦)2 − 1) −  8 𝜋 4 𝑠𝑖𝑛(𝜋𝑦)2(𝑐𝑜𝑠(𝜋𝑥)2 − 1)

+  7.89568352 ∗ 10  𝜋 2 𝑐𝑜𝑠(𝜋𝑥)2 𝑐𝑜𝑠(𝜋𝑦)2 −  7.89568352

∗ 10  𝜋 2 𝑐𝑜𝑠(𝜋𝑥)2𝑠𝑖𝑛(𝜋𝑦)2 − 7.89568352 ∗ 10 𝜋 2 𝑐𝑜𝑠(𝜋𝑦)2𝑠𝑖𝑛(𝜋𝑥)2

+ 7.89568352 ∗ 10 𝜋 2 sin (𝜋𝑥)2𝑠𝑖𝑛(𝜋𝑦)2 

 

The computed values of the deflection 𝑤(0.5, 0.5) is represented in Table 7. The exact 

solution  𝑤(0.5, 0.5) = 1. we again obtain results of different accuracy  

 

Table 7 Rate of convergence of the different accuracy in case of Example 4.4 

 Step size  Second order 𝒐(𝒉𝟐) Fourth order 𝒐(𝒉𝟒) Sixth order 𝒐(𝒉𝟔) 

0.12500 0.661260577 0.698334435 0.726405113 

0.06250 0.809711609 0.858964118 0.893533303 

0.04545 0.885677195 0.903637915 0.942763069 

0.03125 0.914088288 0.932841374 0.970844666 

0.01851 0.932779584 0.964580534 0.988511616 

0.01562 0.955003453 0.974689032 0.988829783 

0.00925 0.972183561 0.983160346 0.998714487 

0.00463 0.987882879 0.991281627 0.99890543 
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Table 8.  Comparison of error between the of different accuracy in case of Example 4.4 

Step 

size  
0.125 0.0625 0.045455 0.03125 0.018519 0.015625 0.009259 0.00463 

Error          

2
nd

order  

 

4
th 

order 

 

6
th

order 

0.338739 

 

0.301666 

 

0.273595 

 

0.190288 

 

0.141036 

 

0.106467 

 

0.114323 

 

0.096362 

 

0.057237 

 

0.085912 

 

0.067159 

 

0.029155 

 

0.06722 

 

0.035419 

 

0.011488 

 

0.044997 

 

0.025311 

 

0.01117 

 

0.027816 

 

0.01684 

 

0.001286 

 

0.012117 

 

0.008718 

 

0.001095 

 

 

 

Figure 11. Comparison of solution of different accuracy Example 4.4 
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Figure 12. Plots of ordinary error with different mesh sizes for different accuracy for Example 4.4. 

 
Figure 13. Solution plot of the Example 4.4 for M = 217. 

4. Concluding Remarks 

In this paper, we have introduced a method for solving the biharmonic equation within the 

unit square Ω, showcasing its optimality across various accuracy levels and demonstrating 

super convergence results. The presented numerical experiments highlight the rapid 

convergence of the coupling and decoupling method, particularly when employing the 

accuracy of 𝑂(ℎ6). This observation underscores the effectiveness of the approach to reduce 

biharmonic problems to a sequence of second-order problems, requiring fewer grid points 

compared to classical methods. The utilization of compact finite difference schemes has 
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proven instrumental in minimizing the grid points for solving the biharmonic equation with 

higher-order accuracy. This technique relies on a work on Laplace operator and use it for all 

powers of Laplace (Bi-Harmonic, Tri-Harmonic, Quad-Harmonic…). There will be no need 

for complicated and difficult to obtain stencils of poly-Hamonic operators.  
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